首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
A novel cobalt-tetraphenylporphyrin/reduced graphene oxide (CoTPP/RGO) nanocomposite was prepared by a π–π stacking interaction and characterized by ultraviolet–visible absorption spectroscopy (UV–vis), Fourier transform infrared spectroscopy (FTIR) and electrochemical impedance spectroscopy (EIS). The CoTPP/RGO nanocomposite exhibited high electrocatalytic activity both for oxidation and reduction of H2O2. The current response was linear to H2O2 concentration with the concentration range from 1.0 × 10−7 to 2.4 × 10−3 mol L−1 (R = 0.998) at the reductive potential of −0.20 V and from 1.0 × 10−7 to 4.6 × 10−4 mol L−1 (R = 0.996) at the oxidative potential of +0.50 V. The H2O2 biosensor showed good anti-interfering ability towards oxidative interferences at the oxidative potential of +0.50 V and good anti-interfering ability towards reductive interferences at the reductive potential of −0.20 V.  相似文献   

2.
In this study, we developed a fluorescence assay for the highly sensitive and selective detection of Hg2+ and Pb2+ ions using a gold nanoparticle (Au NP)-based probe. The Hg–Au and Pb–Au alloys that formed on the Au NP surfaces allowed the Au NPs to exhibit peroxidase-mimicking catalytic activity in the H2O2-mediated oxidation of Amplex UltraRed (AUR). The fluorescence of the AUR oxidation product increased upon increasing the concentration of either Hg2+ or Pb2+ ions. By controlling the pH values of 5 mM tris–acetate buffers at 7.0 and 9.0, this H2O2–AUR–Au NP probe detected Hg2+ and Pb2+ ions, respectively, both with limits of detection (signal-to-noise ratio: 3) of 4.0 nM. The fluorescence intensity of the AUR oxidation product was proportional to the concentrations of Hg2+ and Pb2+ ions over ranges 0.05–1 μM (R2 = 0.993) and 0.05–5 μM (R2 = 0.996), respectively. The H2O2–AUR–Au NP probe was highly selective for Hg2+ (>100-fold) and Pb2+ (>300-fold) ions in the presence of other tested metal ions. We validated the practicality of this simple, selective, and sensitive H2O2–AUR–Au NP probe through determination of the concentrations of Hg2+ and Pb2+ ions in a lake water sample and of Pb2+ ions in a blood sample. To the best of our knowledge, this system is the first example of Au NPs being used as enzyme-mimics for the fluorescence detection of Hg2+ and Pb2+ ions.  相似文献   

3.
Reaction between 3-((1R,2R)-2-{[1-(3,5-di-tert-butyl-2-hydroxy-phenyl)-meth-(E)-ylidene]-amino}-cyclohexyl)-1-isopropyl-4-phenyl-3H-imidazol-1-ium bromide (1a) or the derivative 3-((1R,2R)-2-{[1-(2-hydroxy-5-nitro-phenyl)-meth-(E)-ylidene]-amino}-cyclohexyl)-1-isopropyl-4-phenyl-3H-imidazol-1-ium bromide (1b) and metal halides MClx.yTHF (M = Zr, x = 4, y = 2; M = V, x = y = 3; M = Cr, x = y = 3), in THF, at −78 °C gives the metal complexes of general formula [MClx2-N,O-OC6H2R1R2C(H)N-C6H10-Im)2][Br]2 (where M = Zr, x = 2, R1 = R2 = tBu, 2; M = Zr, x = 2, R1 = H, R2 = NO2, 3; M = V, x = 1, R1 = R2 = tBu, 4; M = Cr, x = 1, R1 = R2 = tBu, 5; M = Fe, x = 0, R1 = R2 = tBu, 6; Im = 1-isopropyl-4-phenyl-3H-imidazol-1-ium-3-yl). 1H and 13C NMR spectroscopy of 2 and 3 indicate κ2-N,O-ligand coordination via the phenoxy-imine moiety with pendant imidazolium salt that is corroborated by a single crystal structure of 6. Compounds 2, 3, 4 and 5 were tested as precatalysts for ethylene polymerisation in the presence of methylaluminoxane (MAO) cocatalyst, showing low activity. Selected polymer samples were characterised by GPC showing multimodal molecular weight distributions.  相似文献   

4.
Novel substituted 2-[(2-hydroxyethyl)]aminophenols, MeN(CHR1CR2R3OH)(C6H4-o-OH) (2-5), were synthesized by the reaction of 2-methylaminophenol with corresponding oxiranes. Titano-spiro-bis(ocanes) [MeN(CHR1CR2R3O)(C6H4-o-O)]2Ti 6-9 (2, 6, R1 = H, R2 = R3 = Me; 3, 7, R1 = R2 = Ph (treo-), R3 = H; 4, 8, R1 = Ph, R2 = R3 = H; 5, 9, R1 = R2 = H, R3 = Ph) based on [ONO]-ligands have been synthesized. The obtained compounds were characterized by 1H and 13C NMR spectroscopy and elemental analysis data. The complex [Ti(μ2-O){O-o-C6H4}{μ2-CMe2CH2}NMe]6 (10) was obtained by controlled hydrolysis of 6. Molecular structure of 10 was determined by X-ray structure analysis.  相似文献   

5.
Ryo Kato 《Tetrahedron letters》2004,45(22):4273-4276
Potential use of a surfactant-like receptor is demonstrated at the 1,2-dichloroethane-water interface for strong and selective binding of H2PO4 over Br and Cl. The analysis by interfacial tensiometry reveals that the interfacial adsorption of a thiourea-isothiouronium conjugate, BT-C1, is significantly stabilized by the binding of H2PO4 with the adsorption constant of 1.7 × 105 M−1 while the interfacial adsorptivity of this receptor is relatively moderate for Br (0.81 × 105 M−1) and Cl (0.63 × 105 M−1). Such complexation-induced interfacial adsorption behaviors of BT-C1 are discussed as a basis for the development of receptor-based chemical sensors for phosphate anions.  相似文献   

6.
It has been suggested recently that the alanes AlnHn + 2 can be treated by the polyhedral skeletal electron pair theory (PSEPT) of Wade and Mingos (W-M) as it was successful for their borane congeners such as BnHn + 2, well known as the deprotonated BnHn2−. To do so, the neutral AlnHn + 2 have been considered as AlnHn2− + 2H+. The additional hydrogens donate their electrons to the AlnHn polyhedral framework and according to the n + 1 electron pairs rule; these clusters should have closo-polyhedral structures. In this work the homologous gallanes, the structures and stabilities of GanHn + 2 are studied at high levels of calculational theory and we investigated the applicability of the W-M rule to the alanes and gallanes AnHn + 2 (n = 4-6; A = Al, Ga). It will be shown that the presence of bridging hydrogen atoms reduces the compactness of the corresponding polyhedron and so these species do not have the closed structures. The computations were performed at B3LYP/6-311+G(d,p), BPW91/6-311G(d,p) and B3LYP/6-311+G(3df,2p) levels of theory. Our interest in these compounds includes their potential use as hydrogen storage species and future clean sources of energy.  相似文献   

7.
The reaction of bromomethyl-dibromo-indium(III), Br2InCH2Br with dialkylselenides, R1SeR2 (R1 = CH3, R2 = CH2C6H5; R1 = C2H5, R2 = CH2C6H5; R1 = R2 = CH2C6H5) afforded the corresponding dialkylselenonium methylide complexes of indium tribromide, Br3InCH2SeR1R2, which were fully characterized by NMR spectroscopy and single crystal X-ray diffraction studies.  相似文献   

8.
The synthesis, properties and applications of a novel boronate-functioned styryl dye, BSD, as a colorimetric sensor for hydrogen peroxide is presented. The dye displayed remarkable color change from colorless (λmax = 391 nm) to deep red (λmax = 522 nm) in the presence of H2O2 and the behavior could be rationalized by the chemoselective H2O2-mediated transformation of arylboronate to phenolate, resulting in the release of the merocyanine dye which featured with strong intramolecular charge transfer (ICT) absorption band. The absorption increment of merocyanine at λmax = 522 nm (? = 87000 L mol−1 cm−1) is linear with the concentration of H2O2 in the range of 1.0 × 10−7-2.5 × 10−5 mol L−1 with the detection limit of 6.8 × 10−8 mol L−1 under optimum conditions. There is almost no interference by other species that commonly exist due to the specific deprotection of H2O2 towards arylboronate group on BSD. The chromogenic sensor has been applied to the detection of trace amounts of hydrogen peroxide in rain water.  相似文献   

9.
A series of new zirconium complexes bearing bis(phenoxyketimine) ligands, bis((3,5-di-tert-butyl-C6H2-2-O)R1CN (2-R2-C6H4))ZrCl2 {R1 = Me, R2 = H (2a); R1 = Et, R2 = H (2b); R1 = Ph, R2 = H (2c); R1 = 2-Me-Ph, R2 = H (2d); R1 = 2-F-Ph, R2 = H (2e); R1 = 2-Cl-Ph, R2 = H (2f); R1 = 2-Br-Ph, R2 = H (2g); R1 = Ph, R2 = Me (2h); R1 = Ph, R2 = F (2i)}, have been prepared, characterized and tested as catalyst precursors for ethylene polymerization. Crystal structure analysis reveals that complex 2c has a six coordinate center in a distorted octahedral geometry with trans-O, cis-N, cis-Cl arrangement which possesses approximate C2 symmetry. When activated with methylaluminoxane (MAO), complexes 2a-2i exhibited high ethylene polymerization activities of 106-108 g PE (mol M h)−1. Compared with the bis(phenoxyimine) zirconium analogues bis((3,5-di-tert-butyl-C6H2-2-O)CHNC6H5)ZrCl2 (3), the introduction of substituent on the carbon atom of the imine double bond enhanced the catalytic activity and molecular weight of prepared polyethylene. Especially, when the H atom at the carbon atom of the imine double bond was replaced by 2-fluoro-phenyl with strong electronic-withdrawing property, complex 2e displayed the highest catalytic activity, and the polyethylene obtained possessed the highest molecular weight and melt point.  相似文献   

10.
A new crystal of Nd3+:Sr3Y2 (BO3)4 with a dimension of Φ 15×30 mm3 was grown by the Czochralski method. The grown crystal was characterized using X-ray diffraction. The absorption and emission spectra of Nd3+:Sr3Y2 (BO3)4 were investigated. The absorption transition at 807 nm has an FWHM of 16 nm. The absorption and emission cross sections are 6.32×10−20 cm2 at 807 nm and 1.07×10−19 cm2 at 1065 nm, respectively. The luminescence lifetime τf is 51.7 μs at room temperature.  相似文献   

11.
Although R2O3:MoO3=1:6 (R=rare earth) compounds are known in the R2O3-MoO3 phase diagrams since a long time, no structural characterization has been achieved because a conventional solid-state reaction yields powder samples. We obtained single crystals of R2Mo6O21·H2O (R=Pr, Nd, Sm, and Eu) by thermal decomposition of [R2(H2O)12Mo8O27nH2O at around 685-715 °C for 2 h, and determined their crystal structures. The simulated XRD patterns of R2Mo6O21·H2O were consistent with those of previously reported R2O3:MoO3=1:6 compounds. All R2Mo6O21·H2O compounds crystallize isostructurally in tetragonal, P4/ncc (No. 130), a=8.9962(5), 8.9689(6), 8.9207(4), and 8.875(2) Å; c=26.521(2), 26.519(2), 26.304(2), and 26.15(1) Å; Z=4; R1=0.026, 0.024, 0.024, and 0.021, for R=Pr, Nd, Sm, and Eu, respectively. The crystal structure of R2Mo6O21·H2O consists of two [Mo2O7]2−-containing layers (A and B layers) and two interstitial R(1)3+ and R(2)3+ cations. Each [Mo2O7]2− group is composed of two corner-sharing [MoO4] tetrahedra. The [Mo2O7]2− in the B layer exhibits a disorder to form a pseudo-[Mo4O9] group, in which four Mo and four O sites are half occupied. R(1)3+ achieves 8-fold coordination by O2− to form a [R(1)O8] square antiprism, while R(2)3+ achieves 9-fold coordination by O2− and H2O to form a [R(2)(H2O)O8] monocapped square antiprism. The disorder of the [Mo2O7]2− group in the B layer induces a large displacement of the O atoms in another [Mo2O7]2− group (in the A layer) and in the [R(1)O8] and [R(2)(H2O)O8] polyhedra. A remarkable broadening of the photoluminescence spectrum of Eu2Mo6O21·H2O supported the large displacement of O ligands coordinating Eu(1) and Eu(2).  相似文献   

12.
A crystal of Nd3+:Sr6GdSc(BO3)6 with the dimension of φ20×30 mm3 was grown by Czochralski method. The grown crystal was characterized by X-ray diffraction and DSC analysis. The DSC analysis showed that the crystal congruently melt at 1306.7°C. The absorption and emission spectra of Nd3+:Sr6GdSc(BO3)6 were investigated. The absorption band at 806 nm has a FWHM of 13 nm. The absorption and emission cross-sections are 2.33×10−20 cm2 at 806 nm and 1.58×10−19 cm2 at 1062 nm, respectively. The luminescence lifetime τf is 75 μs at room temperature.  相似文献   

13.
The reactions of cobalt(II) chloride with racemic malic acid (H3mal = C4H6O5) result in the isolation of monomeric, dimeric and tetrameric cobalt malato complexes: (NH4)2[Co(R-Hmal)(S-Hmal)] · 2H2O (1), [Co2(R-Hmal)(S-Hmal)(H2O)4]n · 2nH2O (2), K4[Co4(OH)2(R-mal)2(S-mal)2(H2O)4] · 10H2O (3) and trans-[Co(R-H2mal)(S-H2mal)(H2O)2] · 2H2O (4). The formations of the malato complexes are dependent on the pH value, the molar ratio of the solutions, the reaction temperature and the counterions. In the water-soluble compound 1, the CoII ion is octahedrally coordinated by two tridentate malates via their α-hydroxy, α-carboxy and β-carboxy groups. The malate ligands in 2 coordinate with the cobalt ion via their α-hydroxy and α-carboxy groups, while the β-carboxy group acts as a bridging ligand for the other two cobalt ions, forming a novel dimeric unit [Co2(R-Hmal)(S-Hmal)(H2O)4], which further connects into a layered structure through links from the oxygen atoms of the β-carboxy groups. Complex 3 is a tetranuclear mixed-valence species. Both of the CoII ions exist in trans-[Co(R-mal)(S-mal)(H2O)2] units, which are linked by a CoIII2(OH)2 unit with bridging α-alkoxy and β-carboxy groups. Compound 4 is the main product of reaction between cobalt chloride and excess malate under weakly acidic conditions.  相似文献   

14.
A hyphenated ion-pair (tetrabutylammonium chloride—TBACl) reversed phase (C18) HPLC-ICP-MS method (High Performance Liquid Chromatography Inductively Coupled Plasma Mass Spectroscopy) for anionic Rh(III) aqua chlorido-complexes present in an HCl matrix has been developed. Under optimum chromatographic conditions it was possible to separate and quantify cationic Rh(III) complexes (eluted as a single band), [RhCl3(H2O)3], cis-[RhCl4(H2O)2], trans-[RhCl4(H2O)2] and [RhCln(H2O)6−n]3−n (n = 5, 6) species. The [RhCln(H2O)6−n]3−n (n = 5, 6) complex anions eluted as a single band due to the relatively fast aquation of [RhCl6]3− in a 0.1 mol L−1 TBACl ionic strength mobile phase matrix. Moreover, the calculated t1/2 of 1.3 min for [RhCl6]3− aquation at 0.1 mol kg−1 HCl ionic strength is significantly lower than the reported t1/2 of 6.3 min at 4.0 mol kg−1 HClO4 ionic strength. Ionic strength or the activity of water in this context is a key parameter that determines whether [RhCln(H2O)6−n]3−n (n = 5, 6) species can be chromatographically separated. In addition, aquation/anation rate constants were determined for [RhCln(H2O)6−n]3−n (n = 3-6) complexes at low ionic strength (0.1 mol kg−1 HCl) by means of spectrophotometry and independently with the developed ion-pair HPLC-ICP-MS technique for species assignment validation. The Rh(III) samples that was equilibrated in differing HCl concentrations for 2.8 years at 298 K was analyzed with the ion-pair HPLC method. This analysis yielded a partial Rh(III) aqua chlorido-complex species distribution diagram as a function of HCl concentration. For the first time the distribution of the cis- and trans-[RhCl4(H2O)2] stereoisomers have been obtained. Furthermore, it was found that relatively large amounts of ‘highly’ aquated [RhCln(H2O)6−n]3−n (n = 0-4) species persist in up to 2.8 mol L−1 HCl and in 1.0 mol L−1 HCl the abundance of the [RhCl5(H2O)]2− species is only 8-10% of the total, far from the 70-80% as previously proposed. A 95% abundance of the [RhCl6]3− complex anion occurs only when the HCl concentration is above 6 mol L−1. The detection limit for a Rh(III) species eluted from the column is below 0.147 mg L−1.  相似文献   

15.
A detailed study of iron (III)–citrate speciation in aqueous solution (θ = 25 °C, Ic = 0.7 mol L−1) was carried out by voltammetric and UV–vis spectrophotometric measurements and the obtained data were used for reconciled characterization of iron (III)–citrate complexes. Four different redox processes were registered in the voltammograms: at 0.1 V (pH = 5.5) which corresponded to the reduction of iron(III)–monocitrate species (Fe:cit = 1:1), at about −0.1 V (pH = 5.5) that was related to the reduction of FeL25−, FeL2H4− and FeL2H23− complexes, at −0.28 V (pH = 5.5) which corresponded to the reduction of polynuclear iron(III)–citrate complex(es), and at −0.4 V (pH = 7.5) which was probably a consequence of Fe(cit)2(OH)x species reduction. Reversible redox process at −0.1 V allowed for the determination of iron(III)–citrate species and their stability constants by analyzing Ep vs. pH and Ep vs. [L4−] dependence. The UV–vis spectra recorded at varied pH revealed four different spectrally active species: FeLH (log β = 25.69), FeL2H23− (log β = 48.06), FeL2H4− (log β = 44.60), and FeL25− (log β = 38.85). The stability constants obtained by spectrophotometry were in agreement with those determined electrochemically. The UV–vis spectra recorded at various citrate concentrations (pH = 2.0) supported the results of spectrophotometric–potentiometric titration.  相似文献   

16.
Na2[(VIVO)2(ttha)]·8 H2O (ttha = triethylenetetraamine–N,N,N′,N″,N′″,N′″–hexaacetate ion), prepared by treating [VO(H2O)5][(VO)2(ttha)]·4 H2O with Na6(ttha), has been characterized by single crystal X-ray diffraction, infrared spectroscopy, UV–Vis absorption spectroscopy, electron spin resonance spectroscopy, and modeled by density functional theory (DFT). The X-ray structure revealed a distorted octahedral geometry around each vanadium center. The electronic absorption spectrum of [(VO)2(ttha)]2− (aq) features absorptions at ca. 200 nm (ε > 13900 L mol−1 cm−1), 255 nm (ε = 3480 L mol−1 cm−1), 586 nm (ε = 33 L mol−1 cm−1), and 770 nm (ε = 38 L mol−1 cm−1). The time-dependent density functional theory (TDDFT) calculated electronic absorption spectrum was remarkably similar to the actual spectrum, and TDDFT predicts absorption peaks at 297, 330, 458, 656, and 798 nm. TDDFT assigned the peak at 798 nm to be the α spin HOMO → LUMO transition. Hence, the peak at 770 nm in the actual spectrum is most likely the α spin HOMO → LUMO transition. Moreover, the TDDFT calculations revealed that the α spin HOMO and LUMO are partly comprised of d orbitals on both vanadium centers, and the first derivative electron spin resonance spectrum also suggests that the two unpaired electrons in [(VO)2(ttha)]2− are localized near the vanadium centers.  相似文献   

17.
Complexes of poly(propylene imine) dendrimers D8[DAB-dendr-(NH2)8] and D32 [DAB-dendr-(NH2)32] were prepared by interaction of the dendrimers with transition metal salts such as FeCl3.6H2O; CoCl2.6H2O; CuCl2.2H2O; VOSO4.5H2O; Na2MoO4.2H2O and Na2WO4.2H2O at room temperature in aqueous solutions. The content of metal ions in the complexes was found to be from 8.2 to 69.6 mg metal ion/g polymer carrier. The complexes were characterized by using IR, UV-VIS, Moessbauer spectroscopy and EPR. The anticipated co-ordination structure of the compounds was suggested. It was found that the order of the catalytic activity of the complexes of poly(propylene imine) dendrimers D8 and D32 in the reaction of epoxidation of cyclohexene with organic hydroperoxides such as tert-butyl hydroperoxide (t-BHP), ethylbenzene hydroperoxide (EBHP) and cumene hydroperoxide (CHP) was as follows: D32-MoО22+>D32-VО2+>D32-WО22+ > D32-Co2+ > D32-Cu2+>D32-Fe3+. The order of reactivity of organic hydroperoxides in the reaction studied was: t-BHP > EBHP > CHP.  相似文献   

18.
In the reaction of K4[W(CN)8] · 2H2O and Co2+(aq) cations on the polycrystalline or monocrystalline [3 1 1] copper using layer-by-layer deposition, a thin film of the coordination polymer {[{Co(H2O)2(μ-CN)4}2W] · 4H2O}n was formed. The work function of copper and deposited on it bi-layers depended on a number of layers and the concentrations of the deposited precursors. At high complex concentrations work function reached the plateau after several deposition processes, while at low concentrations oscillations in the work function were observed when K+ or Co2+ cations were present in the outside layer. The changes of the work function were also dependent on Co2+ salt used (CoCl2 · 6H2O or Co(NO3)2 · 6H2O). This was interpreted in terms of a layer structure resulting from various coordination of external anions to cobalt cations.  相似文献   

19.
Reduction by NaBH4 of the imine functions of (5,7,7,13-tetramethyl-13-nitro-1,4,8,11-tetraazacyclotetradec-4-ene)-nickel(II) and -copper(II), and of their 13-ethyl-5,7,7-trimethyl-homologues, yield the nitro-substituted cyclic tetraamine cations (5,5,7,13-tetramethyl-13-nitro-1,4,8,11-tetraazacyclotetradecane)-nickel(II) and -copper(II), [M(neh)]2+, and (13-ethyl-5,5,7-trimethyl-homologues, [M(nph)]2+, respectively. The nickel(II) cations form square–planar, singlet ground, state salts with poorly coordinating anions and octahedral, triplet ground state, compounds with additional ligands, trans-β-[Ni(neh)A2], A = Cl, NCS and trans-β-[Ni(neh)A2](ClO4)2, X = NH3, MeCN, all with nitrogen configuration III, 1R,4R,8S,11S = β. With oxalate the chain-polymeric compound catena-trans-β-[Ni(neh)(μ-C2O4)]n · 3n(H2O) is formed. Folded macrocycle compounds cis-α-[Ni(neh)(C5H7O2)]ClO4 and cis-α-[{Ni(neh)}2(C2O4)](ClO4)2 are formed with the chelates acetylacetonate and oxalate, with configuration 1R,4R,8R,11R = α. These react with HClO4 to form metastable α-[Ni(neh)](ClO4)2 with retention of configuration. The copper(II) cations form crimson salts with poorly coordinating anions and compounds of the type β-[Cu(neh)A]ClO4 of varying shades of blue with coordinating anions. Structures of singlet ground state square–planar nickel(II) compounds β-[Ni(neh)](ClO4)2 · H2O, β-[Ni(neh)](ClO4)2, β-[Ni(neh)]2[ZnCl3(OH2)]2[ZnCl4] · H2O and α-[Ni(neh)](ClO4)2, the triplet ground state chain-polymeric compound catena-trans-β-[Ni(neh)(μ-C2O4)]n · 3n(H2O) and of square–pyramidal β-[Cu(nph)Cl]ClO4 are reported.  相似文献   

20.
Zhao YD  Bi YH  Zhang WD  Luo QM 《Talanta》2005,65(2):489-494
Direct electrochemistry of hemoglobin (Hb) is observed at carbon nanotube (CNT) interface. The adsorbing Hb can transfer electron directly at CNT interface compared with common carbon material. The heterogeneous electron transfer rate constant k of Hb can be calculated as 0.062 s−1, the transfer coefficient α is 0.21 and the average surface coverage of Hb on CNT surface is 3.58 × 10−9 ± 2.7 × 10−10 mol/cm2. It is found that the adsorbing Hb still keeps its catalytic activity to H2O2. This sensor was used to detect H2O2. The apparent Michaelis-Menten constant is calculated as 6.75 × 10−4 mol L−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号