首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shen H  Fang Q 《Talanta》2008,77(1):269-272
An improved microfluidic chip-based sequential-injection trapped-droplet array liquid-liquid extraction system with chemiluminescence (CL) detection was developed in this work. Two recess arrays were fabricated on both sides of the extraction channel to produce droplet arrays of organic extractant. A chip integrated monolithic probe was fabricated at the inlet of the extraction channel on the glass chip instead of the capillary probe connected to the microchannel, in order to improve the system stability and reliability. A slotted-vial array system coupled with the monolithic probe was used to sequentially introduce sample and different solvents and reagents into the extraction channel for extraction and CL detection. The performance of the system was demonstrated in the determination of Al3+ using Al3+-dihydroxyazobenzene (DHAB) and tributyl phosphate (TBP) extraction system. The operation conditions, including extraction time, concentration and flow rate of the CL reagents, were optimized. Within one analysis cycle of 12 min, an enrichment factor of 85 was obtained in the extraction stage with a sample consumption of 1.8 μL. The consumption of CL reagent, bis(2-carbopentyloxy-3,5,6-trichlorophenyl)oxalate (CPPO), was 120 nL/cycle. The detection limit of the system for Al3+ was 1.6 × 10−6 mol/L with a precision of 4.5% (R.S.D., n = 6).  相似文献   

2.
Sun M  Du WB  Fang Q 《Talanta》2006,70(2):392-396
In this work, a miniaturized liquid-liquid extraction system under stopped-flow manipulation mode with spectrometric detection was developed. A Teflon AF liquid-core waveguide (LCW) capillary was used to serve as both extraction channel for organic solvent flow and adsorption detection flow cell. Gravity induced hydrostatic pressure was used to drive the organic and aqueous phases through the extraction channels. During extraction process, a stable organic and aqueous phase interface was formed at the outlet of the capillary, through which the analyte in the flowing aqueous stream was extracted into the stationary organic solvent in capillary. The absorbance of the analyte extracted into the organic solvent was measured in situ by a spectrometric detection system with light emitting diode (LED) as light source and photodiode as absorbance detector. The performance of the system was demonstrated in the determination of sodium dodecyl sulfate (SDS) extracted as an ion pair with methylene blue into chloroform. The precision of the measured absorbance for a 5 mg L−1 SDS standard was 6.1% R.S.D. (n = 5). A linear response range of 1-10 mg L−1 SDS was obtained with 5 min extraction period. The limit of detection (LOD) for SDS based on three times standard deviation of the blank response was 0.25 mg L−1.  相似文献   

3.
Membrane proteins play essential roles in regulating various fundamental cellular functions. To investigate membrane proteins, extraction and purification are usually prerequisite steps. Here, we demonstrated a microfluidic aqueous PEG/detergent two-phase system for the purification of membrane proteins from crude cell extract, which replaced the conventional discontinuous agitation method with continuous extraction in laminar flows, resulting in significantly increased extraction speed and efficiency. To evaluate this system, different separation and detection methods were used to identify the purified proteins, such as capillary electrophoresis, SDS-PAGE and nano-HPLC-MS/MS. Swiss-Prot database with Mascot search engine was used to search for membrane proteins from random selected bands of SDS-PAGE. Results indicated that efficient purification of membrane proteins can be achieved within 5-7s and approximately 90% of the purified proteins were membrane proteins (the highest extraction efficiency reported up to date), including membrane-associated proteins and integral membrane proteins with multiple transmembrane domains. Compared to conventional approaches, this new method had advantages of greater specific surface area, minimal emulsification, reduced sample consumption and analysis time. We expect the developed method to be potentially useful in membrane protein purifications, facilitating the investigation of membrane proteomics.  相似文献   

4.
Shen H  Fang Q  Fang ZL 《Lab on a chip》2006,6(10):1387-1389
A microfluidic chip-based sequential injection system with trapped droplet liquid-liquid extraction preconcentration and chemiluminescence detection was developed for achieving high sensitivity with low reagent and sample consumption. The microfabricated glass lab-chip had a 35 mm long extraction channel, with 134 shrunken opening rectangular recesses (L 100 microm x W 50 microm x D 25 microm) arrayed within a 1 mm length on both sides of the middle section of the channel. Ketonic peroxyoxalate ester solution was filled in the recesses forming organic droplets, and keeping the aqueous sample solution flowing continuously in the extraction channel; analytes were transferred from the aqueous phase into the droplets through molecular diffusion. After liquid-liquid extraction preconcentration, catalyst and hydrogen peroxide solutions were introduced into the channel, and mixed with analytes and peroxyoxalate ester to emit chemiluminescence light. The performance of the system was tested using butyl rhodamine B, yielding a precision of 4% RSD (n = 5) and a detection limit of 10(-9) M. Within a 17 min analytical cycle, the consumptions of sample and peroxyoxalate solutions were 2.7 microL and 160 nL, respectively.  相似文献   

5.
DNA computing is a new computation form based on DNA biochemical reactions, which is mainly composed of sticker and splicing computation models. In this work, a microfluidic chip‐based approach was established for splicing model‐based DNA computing. A finite automaton with two input symbols (a, b) and three states (S0, S1, and S2) was applied in the pattern recognition for isosceles triangles. The DNA computation processes of automaton were realized through DNA digestion, ligation, DNA separation, and detection on the microfluidic chip. The established approach is efficient, controllable, and easy to integrate, which paves the way for the building of complete biomolecular computers in the future.  相似文献   

6.
Mixing a small amount of magnetic beads and regents with large volume samples evenly in microcavities of a microfluidic chip is always the key step for the application of microfluidic technology in the field of magnetophoresis analysis. This article proposes a microfluidic chip for DNA extraction by magnetophoresis, which relies on bubble rising to generate turbulence and microvortices of various sizes to mix magnetic beads with samples uniformly. The construction and working principle of the microfluidic chip are introduced. CFD simulations are conducted when magnetic beads and samples are irritated by the generation of gas bubbles with the variation of supply pressures. The whole mixing process in the microfluidic chip is observed through a high-speed camera and a microfluidic system when the gas bubbles are generated continuously. The influence of supply pressure on the mixing characteristics of the microfluidic chip is investigated and discussed with both simulation and experiments. Compared with magnetic mixing, bubble mixing can avoid the magnetic beads gather phenomenon caused by magnetic forces and provide a rapid and high efficient solution to realize mixing small amount of regents in large volume samples in a certain order without complex moving structures and operations in a chip. Two applications of mixing with the proposed microfluidic chip are also carried out and discussed.  相似文献   

7.
A rapid and highly selective acylation of ferrocene with various acid anhydrides using microfluidic chip as the reactor is described. The pressure driven glass microreactor was fabricated by standard photolithography and wet etching techniques. High conversions of ferrocene to the corresponding acylferrocenes were achieved at 25 °C and no diacylferrocene was observed in any case.  相似文献   

8.
Determination of SARS-coronavirus by a microfluidic chip system   总被引:4,自引:0,他引:4  
Zhou X  Liu D  Zhong R  Dai Z  Wu D  Wang H  Du Y  Xia Z  Zhang L  Mei X  Lin B 《Electrophoresis》2004,25(17):3032-3039
  相似文献   

9.
Gai H  Yu L  Dai Z  Ma Y  Lin B 《Electrophoresis》2004,25(12):1888-1894
A simple method was developed for injecting a sample on a cross-form microfluidic chip by means of hydrostatic pressure combined with electrokinetic forces. The hydrostatic pressure was generated simply by adjusting the liquid level in different reservoirs without any additional driven equipment such as a pump. Two dispensing strategies using a floating injection and a gated injection, coupled with hydrostatic pressure loading, were tested. The fluorescence observation verified the feasibility of hydrostatic pressure loading in the separation of a mixture of fluorescein sodium salt and fluorescein isothiocyanate. This method was proved to be effective in leading cells to a separation channel for single cell analysis.  相似文献   

10.
A model based on the residence time of solvent in the extraction system may be used to describe the dynamic operation of a continuous liquid-liquid extractor. It is proposed that optimum performance occurs when the extract exiting from the contactor is near equilibrium with the solution being extracted. This approach was tested on two commercially available continuous extraction systems. The difference in their performance was found to be related to the level of agitation of the two contactor vessels: the stirred system was approximately six times more efficient than the simple column continuous extractor. The stirred system achieved a near equilibrium analyte distribution between the solvent and sample and could be described accurately in terms of residence time theory. This was in marked contrast to its unmixed counterpart where the analyte distribution between solvent and sample reached 14% of its equilibrium value during its residence in the contactor. The effect of dead volume of solvent within the extraction assembly on the extraction rate was also apparent; its main effect was to delay the extraction process.  相似文献   

11.
Combining the continuous flow liquid-liquid extraction (CFLLE) and supported liquid membrane (SLM) extraction, a novel aqueous-aqueous extraction technique that we termed continuous flow liquid membrane extraction (CFLME) is developed for trace-enrichment. The analyte was firstly extracted into the organic phase in the CFLLE step, then transported onto the organic liquid membrane that formed on the surface of the micro porous membrane of the SLM equipment. Finally, it passed through the liquid membrane and was trapped by the acceptor. Aspects related to CFLME were studied by using dichloromethane as liquid membrane, and sulfonylurea herbicides as model compounds. An enrichment factor of over 1000 was obtained when 10 μg l−1 of MSM was enriched for 120 min by this technique. The drawbacks of only a few organic solvents can be selected as liquid membrane with a limited lifetime in SLM operation was overcome. In this CFLME method, almost all solvents that used in the conventional liquid-liquid extraction (LLE) can be adopted and the lifetime of liquid membrane is no longer a problem.  相似文献   

12.
An automated system to perform liquid-liquid extraction is proposed, in which the effective mixture (the intimate contact) between the aqueous phase and the organic phase, as well as the separation of the phases, are carried out in a micro-batch glass extraction chamber. Sample, reagents and organic solvent are introduced into the glass extraction chamber by a peristaltic pump using air as carrier. The detection of the extracted species from the aqueous phase is made in a small volume (120-150 μl) of isobutyl methyl ketone (MIBK). The system allows enrichment factors of 2-10-fold. The proposed automatic system was evaluated for Cu(II) extraction based on complex formation between copper(II) and 1-(2′-pyridylazo)naphthol (PAN) in MIBK. When a volumetric ration of 2:1 (aqueous:organic) was implemented, copper was detected in the concentration range of 100-1600 μg l−1 (r = 0.9995) with a relative standard deviation of 2% (200 μg l−1, n = 5) and a detection limit of 20 μg l−1. The analytical curve was linear over the concentration range 25-500 μg l−1 (r = 0.9994) when a volumetric ratio of 10:1 was employed. With this ratio, the detection limit was 5.0 μg l−1 and the relative standard deviation was 6% (50 μg l−1, n = 5).  相似文献   

13.
超声辅助液液萃取法提取烟用香精成分的研究   总被引:1,自引:0,他引:1  
采用超声辅助液液萃取法(ULLE)提取某品牌烟用香精成分,GC-MS对其进行分析,研究了不同萃取剂、萃取时间和萃取温度对分析结果的影响,初步确定了最佳条件为:以二氯甲烷为萃取剂,饱和NaCl溶液作水相,室温下超声萃取5 min.又分别与同时蒸馏萃取法(SDE)和传统的液液萃取法(LLE)作以比较,对ULLE法和SDE法鉴定出的化学成分、重现性和定量值进行了对比.结果表明:超声辅助液液萃取具有操作简便、快速、节能、萃取效率高、重现性好等特点,适合于烟用香精成分的提取.  相似文献   

14.
Using a magnetically formed channel called a magnetic channel, a new flow-type cell is proposed. The magnetic channel consists of magnetic walls that are formed by heterogeneous distributions of magnetic flux density around a ferromagnetic track under a magnetic field. The magnetic wall separates the paramagnetic oxidant solution from the diamagnetic reductant solution at a liquid–liquid interface without any solid membranes. In the magnetic channel formed on the cathode, the oxidant solution flows in a quasi-frictionless mode. The anode is placed in the reductant solution surrounding the magnetic channel. Such a geometrical configuration between the oxidant and reductant solutions is interchangeable depending on the magnetism of the solutions. To examine this concept, a Daniel cell system was adopted, where the copper ion in copper sulfate solution is employed as the oxidant and the zinc atom of zinc electrode as the reductant. The copper ion is paramagnetic, so that 1 mol dm−3 copper sulfate solution is injected into the magnetic channel formed on the copper cathode. Zinc sulfate solution (1 mol dm−3; diamagnetic) together with the zinc anode are placed surrounding the magnetic channel. The performance of this flow-type battery was examined up to a current density of 22 mA cm−2. This paper was presented at the International Symposium on Magneto-Science 2005, Yokohama, 2005. Contribution to the special issue “Magnetic Field Effects in Electrochemistry.”  相似文献   

15.
Zhang-Run Xu  Cui-Hong Liu  Jin Fang 《Talanta》2010,80(3):1088-1093
A novel microfluidic chip integrating an osmosis-based micro-pump was developed and used for perfusion cell culture. The micro-pump includes two sealed chambers, i.e., the inner osmotic reagent chamber and the outer water chamber, sandwiching a semi-permeable membrane. The water in the outer chamber was forced to flow through the membrane into the inner chamber via osmosis, facilitating continuous flow of fluidic zone in the channel. An average flow rate of 0.33 μL min−1 was obtained within 50 h along with a precision of 4.3% RSD (n = 51) by using a 100 mg mL−1 polyvinylpyrrolidone (PVP) solution as the osmotic driving reagent and a flow passage area of 0.98 cm2 of the semi-permeable membrane. The power-free micro-pump has been demonstrated to be pulse-free offering stable flow rates during long-term operation. The present microfluidic chip has been successfully applied for the perfusion culture of human colorectal carcinoma cell by continuously refreshing the culture medium with the osmotic micro-pump. In addition, in situ cell immunostaining was also performed on the microchip by driving all the reagent zones with the integrated micro-pump.  相似文献   

16.
PDMS-based multichannel microfluidic chip was designed and fabricated in a simple approach using readily available tools. UV-initiated in situ polymerization of poly(2-hydroxy ethyl methacrylate-co-di(ethylene glycol) diacrylate-co-N,Nʹ-diallyl l -tartardiamide) in an Eppendorf tube was achieved within 40 min. This polymerization process was successfully translated to a microfluidic chip format without any further modifications. Iminodiacetic acid was successfully immobilized on aldehyde functional monoliths via Schiff base reaction and confirmed by FT-IR spectroscopy. Four transition metal ions (Co (II), Zn (II), Ni (II), and Cu (II)) were chelated individually on four IDA-monolith microfluidic chips. The conjoint metal-ion monolith microfluidic chip has displayed high permeability (9.40 × 10–13 m2) and a porosity of 32.8%. This affinity microfluidic chip has pre-fractioned four human plasma proteins (fibrinogen, immunoglobulin, transferrin, and human serum albumin) based on their surface-exposed histidine surface topography. A protein recovery of approximately 95% (Bradford assay data) was achieved. The multimonolith microchip can be reusable even after three protein adsorption-desorption cycles.  相似文献   

17.
A new, simple method was reported to prepare PDMS membranes with micrometer size pores for microfluidic chip applications. The pores were formed by adding polystyrene and toluene into PDMS prepolymer solution prior to spin-coating and curing. The resulting PDMS membrane has a thickness of around 10 μm and macropores with a diameter ranging from 1 to 2 μm measured using scanning electron microscope (SEM) imaging. This PDMS membrane was validated by integrating it with PDMS microfluidic chips for protein separation using isoelectric focusing mechanism coupled with whole channel imaging detection (IEF-WCID). It has been shown that five standard pI markers and a mixture of two proteins, myoglobin and β-lactoglobulin, can be separated using these chips. The results indicated that this macroporous PDMS membrane can replace the dialysis membrane in PDMS chips for the IEF-WCID technique. The preparation method of macroporous PDMS membrane may be potentially applied in other fields of microfluidic chips.  相似文献   

18.
Liu X  Liu X  Liang A  Shen Z  Zhang Y  Dai Z  Xiong B  Lin B 《Electrophoresis》2006,27(15):3125-3128
We developed a microfluidic chip-affinity CE method based on indirect LIF detection to study protein-drug interactions. The interaction between heparin and BSA was quantitatively studied, as a model system. In our method, sodium fluorescein was chosen as background, and redistilled water as marker to monitor EOF. The electrophoretic mobility changes of BSA were measured, with various concentrations of heparin added to the running buffer. Each run was completed within 80 s. The binding constant was determined to be (1.24 +/- 0.05) x 10(3) M(-1), which was in good agreement with that reported in the literature.  相似文献   

19.
An automated flow injection (FI) manifold based on iterative change of the flow direction has been designed to carry out continuous liquid-liquid extraction without phase separation and hydrolysis both with ultrasound-assistance. The dynamic approach has been applied to suppositories from which paracetamol has been extracted in this way into an aqueous phase and hydrolysed prior to reaction with o-cresol in the alkaline medium used as extractant. The three linked reactions, extraction-hydrolysis-derivatisation, cause displacement of the balance to completeness. The strategic location of the photometric flow-cell in the flow-injection manifold enables monitoring of the overall process and the obtaining of a characteristic multipeak recording. The influence of ultrasounds on the different steps was investigated. The indophenol blue dye formed was monitored at 620 nm. The limits of detection (LOD) and quantification (LOQ) of the method are 0.38 and 0.64 μg ml−1, respectively, with a linear range from 0.64 to 50 μg ml−1; a within-laboratory reproducibility between 2.07 and 4.66% and repeatability from 2.01 to 4.63%, both expressed as relative standard deviation. The results obtained with the proposed method are in excellent agreement with those provided by the official method, but with a shorter analysis time, lower sample and reagent consumption and less analyst involvement.  相似文献   

20.
The improvement in accuracy of in vitro diagnosis has always been the focus of early screening of thyroid dysfunction. We constructed a microfluidic chip based on a polystyrene polymer substrate. Total triiodothyronine (TT3), total thyroxine (TT4), free triiodothyronine (FT3), free thyroxine (FT4), and thyrotropin (TSH) in human whole blood samples were analysed by fluorescence immunoassay to evaluate thyroid function. The results indicate that the microfluidic chip shows a good linear relationship in the detection of TT3, TT4, FT3, FT4, and TSH standards, and the correlation coefficient (r) is not less than 0.9900. In addition, the chip also has strong anti-interference (RSD% ≤ 5%) and good repeatability (CV ≤ 8%), and its inter-batch differences are small (CV ≤ 15%). The results of practical application in clinical thyroid function measurement indicated its high accuracy (r ≥ 0.9900). It provides a new method for the determination of thyroid function and lays a foundation for subsequent clinical application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号