首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method has been developed to determine acrylamide in aqueous matrices by using direct immersion solid-phase microextraction (SPME) coupled to gas chromatography-positive chemical ionization tandem mass spectrometry (GC-PCI-MS-MS) in the selected reaction monitoring (SRM) mode. The optimized SPME experimental procedures to extract acrylamide in water solutions were: use of a carbowax/divinylbenzene (CW/DVB)-coated fiber at pH 7, extraction time of 20 min and analyte desorption at 210 °C for 3 min. A detection limit of 0.1 μg L−1 was obtained. The linear range was 1-1000 μg L−1. The relative standard deviation was 10.64% (n = 7). The proposed analytical method was successfully used for the quantification of trace acrylamide in foodstuffs such as French fries (1.2 μg g−1) and potato crisps (2.2 μg g−1).  相似文献   

2.
气相色谱-质谱法测定油炸淀粉类食品中的丙烯酰胺   总被引:16,自引:0,他引:16  
 建立了油炸淀粉类食品中丙烯酰胺的溴衍生化气相色谱-质谱(GC-MS)测定方法。样品经水提取、高速离心、石墨化 炭黑柱净化、溴衍生化后,以GC-MS选择离子进行定性,同位素稀释技术定量。该方法的检出限为5 μg/kg,回收率为90% ~105%,相对标准偏差为6.3%。利用该方法对市场上某些油炸淀粉类食品进行了初步测定,发现薯片和炸薯条中含有27 8~4518 μg/kg的丙烯酰胺。  相似文献   

3.
This paper describes the use of liquid chromatography coupled to tandem mass spectrometry for the determination of acrylamide in several typical foods produced and consumed in Spain. Christmas sweets, olives, traditionally made potato crisps, pastry products, sweet fritters ("churros") and one of Spain's most famous dishes, Spanish omelette, were selected. Using the mass spectra information provided by an ion trap analyzer in combination with the accurate mass measurements from time-of-flight (TOF) spectrometry a co-extractive interference present in some potato products was identified as valine. A porous graphitic carbon column, which enabled the co-extractive and acrylamide to be separated, and ion trap or triple quadrupole analyzers, depending on the acrylamide concentration, were used to determine this genotoxic compound in foodstuffs. The highest values were found in potato products, sweet fritters, Christmas sweets and pastry products, with values ranging between 70 and 2000 microg/g. Spanish omelette presented relatively low levels, similar to those obtained for dried fruits.  相似文献   

4.
Current assays for acrylamide screening rely heavily on LC-MS/MS or GC-MS, techniques that are not suitable to support point of manufacturing verification because it can take several weeks to receive results from a laboratory. A portable sensor that can detect acrylamide levels in real-time would enable in-house testing to safeguard both the safety of the consumer and the economic security of the agricultural supplier. Our objective was to develop a rapid, accurate, and real-time screening technique to detect the acrylamide content in par-fried frozen French fries based on a portable infrared device. Par-fried French fries (n = 70) were manufactured at times ranging from 1 to 5.5 min at 180 °C to yield a wide range of acrylamide levels. Spectra of samples were collected using a portable FT-IR device operating from 4000 to 700 cm−1. Acrylamide was extracted using QuEChERS and quantified using uHPLC-MS/MS. Predictive algorithms were generated using partial least squares regression (PLSR). Acrylamide levels in French fries ranged from 52.0 to 812.8 µg/kg. The best performance of the prediction algorithms required transformation of the acrylamide levels using a logarithm function with models giving a coefficient of correlation (Rcv) of 0.93 and RPD as 3.8, which means the mid-IR model can be used for process control applications. Our data corroborate the potential of portable infrared devices for acrylamide screening of high-risk foods.  相似文献   

5.
Başkan S  Erim FB 《Electrophoresis》2007,28(22):4108-4113
An NACE method was developed for the quantitative determination of acrylamide in processed food. The method is premised on the modification of the aqueous acid-base character of acrylamide in an organic solution. Acrylamide, which is a polar molecule in aqueous solution, in a low-pH environment in ACN acquires a proton, and thereby migrates under its own electrophoretic mobility in CE. Thus, nonaqueous separation of acrylamide was achieved by employing 30 mmol/L HClO(4) in ACN as the running electrolyte. The detection limit of the method for acrylamide was found as 0.041 mg/L using UV detection at 200 nm. The run-to-run and day-to-day precisions for the corrected peak areas were calculated as 1.65 and 3.90%, respectively. The applicability of the method has been demonstrated by analyzing acrylamide in the samples of potato chips and French fries. The method is simple, rapid, inexpensive, and widely applicable for the determination of acrylamide in food samples.  相似文献   

6.
This paper proposes a new method for quantitative analysis of acrylamide in cereal-based foods and potato chips. The method uses reaction with trifluoroacetic anhydride, and analyses the resulting derivative by use of gas chromatography with electron-capture detection (GC–ECD). The effects of derivatization conditions, including temperature, reaction time, and catalyst, on the acylation reaction were evaluated. Chromatographic analysis was performed on an SE-54 capillary column. Under the optimum conditions, good retention and peak response were achieved for the acrylamide derivative. The analytical method was fully validated by assessment of LODs and LOQs (1 ng g?1 and 25 ng g?1, with relative standard deviations (RSD) 2.1 and 3.6, respectively), linearity (R?=?0.9935 over the range 0.03–10 μg g?1), and extraction recovery (>96 %, with RSD below 2.0, for acrylamide spiked at 1, 20, 50, and 100 ng g?1; 99.8 % for acrylamide content >1000 ng g?1). The method requires no clean-up of the acrylamide derivative before injection. The method has been successfully used to determine acrylamide levels in different commercial cereal-based foods, French fries, and potato chips.
Figure
Novel derivatization method and GC-ECD analysis of acrylamide in cooked foods  相似文献   

7.
The present study developed two analytical methods for quantification of acrylamide in complex food matrixes, such as Chinese traditional carbohydrate-rich foods. One is based on derivatization with potassium bromate and potassium bromide without clean-up prior to gas chromatography with micro-electron capture detector (GC-MECD). Alternatively, the underivatized acrylamide was detected by high-performance liquid chromatography coupled to quadrupole tandem mass spectrometry (HPLC-MS/MS) in the positive electrospray ionization mode. For both methods, the Chinese carbohydrate-rich samples were homogenized, defatted with petroleum ether and extracted with aqueous solution of sodium chloride. Recovery rates for acrylamide from spiked Chinese style foods with the spiking level of 50, 500 and 1000 μg kg−1 were in the range of 79-93% for the GC-MECD including derivatization and 84-97% for the HPLC-MS/MS method. Typical quantification limits of the HPLC-MSMS method were 4 μg kg−1 for acrylamide. The GC-MECD method achieved quantification limits of 10 μg kg−1 in Chinese style foods. Thirty-eight Chinese traditional foods purchased from different manufacturers were analyzed and compared with four Western style foods. Acrylamide contaminant was found in all of samples at the concentration up to 771.1 and 734.5 μg kg−1 detected by the GC and HPLC method, respectively. The concentrations determined with the two different quantitative methods corresponded well with each other. A convenient and fast pretreatment procedure will be optimized in order to satisfy further investigation of hundreds of samples.  相似文献   

8.
Xun Zhou 《Talanta》2007,71(4):1541-1545
A simple and rapid method using micellar electrokinetic capillary chromatography (MEKC) was developed for the separation and determination of acrylamide in potato chips at low levels for the first time. The experimental conditions for the separation and quantification of acrylamide were optimized at first. The optimized conditions were: 50 mmol/L Na2B4O7 and 40 mmol/L SDS at pH 10.0, 12 kV applied voltage, 76 cm total length (67 cm effective length) and 75 μm i.d. capillary, 198 nm wavelength, 15 cm high 25 s hydrodynamics sample injection, 20 °C air-cooling. The linear response of acrylamide concentration ranges from 0.5 to 100 μg/mL with high correlation coefficient (r = 0.9986, n = 9). The LOD and LOQ were estimated to be 0.1 and 0.33 μg/mL based on S/N = 3 and 10. The precision values (expressed as R.S.D.) of intra- and inter-day were 0.86-4.35% and 2.61-9.65%, respectively. Recoveries spiked at levels 2, 20, 60 μg/mL ranged between 90.86% and 99.6% with R.S.D. less than 6.5%. Finally, the developed method has been applied to the analysis of real samples and has achieved satisfactory results. All of these indicated that it was a reliable method for the quantification of acrylamide in potato chips.  相似文献   

9.
A fast and cost-effective method using HPLC/UV has been developed for determination of acrylamide in deep-fried flour-based leaven dough foods available in Hong Kong. The samples were purified by a simple solid-phase extraction method which combined Oasis HLB and Bond Elut-Accucat cartridges. The aqueous sample solution was centrifuged at 14,500 ×g and 0 °C for 15 min to successfully remove the fat in the samples. A gradient elution program and a mobile phase of 4.0% v/v acetonitrile in water allowed sufficient retention and well resolved acrylamide from the food matrices in the sample extracts. Acrylamide was detected at UV wavelengths of 210 and 225 nm. The amounts of acrylamide in eight food samples were 27-198 μg/kg when 1-g samples were analyzed. The recoveries of acrylamide were larger than 78.0% and the precisions were 2.1-10.9% (n = 3). Our proposed method is especially relevant for analyzing acrylamide in those oily food matrices.  相似文献   

10.
For over ten years, there has been a considerable interest in determination of acrylamide in foodstuffs. It was known that both protein-rich and carbohydrates-rich foods cooked at high-temperatures can cause acrylamide formation. However, carbohydrates-rich foods such as potato chips and biscuit samples have been the common studied foods compared with protein-rich foods such as meat samples.In this study, determination of acrylamide in these two group foods was examined using HPLC-MS. For this purpose, firstly, the parameters that are thought to affect the response in the HPLC-MS analysis were optimized. The optimized conditions were found to be 0.3 ml min− 1 for flow rate of mobile phase, 40 µl for injection volume, 5 °C for column temperature and 70 V for fragmentor potential. The optimized method was applied for the determination of acrylamide levels in Turkish foodstuffs including grilled meat and chicken samples, potato chips, coffee and biscuit. The obtained concentrations for all studied foods were in the range of 20–250 µg kg− 1. The results showed that acrylamide concentrations highly varied depending on the kind of food samples.  相似文献   

11.
The spontaneous formation of the neurotoxic carcinogen acrylamide in a wide range of cooked foods has recently been discovered. These foods include bread and other bakery products, crisps, chips, breakfast cereals, and coffee. To date, the diminutive size of acrylamide (71.08 Da) has prevented the development of screening immunoassays for this chemical. In this study, a polyclonal antibody capable of binding the carcinogen was produced by the synthesis of an immunogen comprising acrylamide derivatised with 3-mercaptobenzoic acid (3-MBA), and its conjugation to the carrier protein bovine thyroglobulin. Antiserum from the immunised rabbit was harvested and fully characterised. It displayed no binding affinity for acrylamide or 3-MBA but had a high affinity for 3-MBA-derivitised acrylamide. The antisera produced was utilised in the development of an ELISA based detection system for acrylamide. Spiked water samples were assayed for acrylamide content using a previously published extraction method validated for coffee, crispbread, potato, milk chocolate and potato crisp matrices. Extracted acrylamide was then subjected to a rapid 1-h derivatisation with 3-MBA, pre-analysis. The ELISA was shown to have a high specificity for acrylamide, with a limit of detection in water samples of 65.7 μg kg−1, i.e. potentially suitable for acrylamide detection in a wide range of food commodities. Future development of this assay will increase sensitivity further. This is the first report of an immunoassay capable of detecting the carcinogen, as its small size has necessitated current analytical detection via expensive, slower, physico-chemical techniques such as Gas or Liquid Chromatography coupled to Mass Spectrometry.  相似文献   

12.
Acrylamide levels over a wide range of different food products were analysed using both liquid chromatography–tandem mass spectrometry (HPLC–MS–MS) and gas chromatography–tandem mass spectrometry (GC–MS–MS). Two different sample preparation methods for HPLC–MS–MS analysis were developed and optimised with respect to a high sample throughput on the one hand, and a robust and reliable analysis of difficult matrices on the other hand. The first method is applicable to various foods like potato chips, French fries, cereals, bread, and roasted coffee, allowing the analysis of up to 60 samples per technician and day. The second preparation method is not as simple and fast but enables analysis of difficult matrices like cacao, soluble coffee, molasses, or malt. In addition, this method produces extracts which are also well suited for GC–MS–MS analysis. GC–MS–MS has proven to be a sensitive and selective method offering two transitions for acrylamide even at low levels up to 1 μg kg−1. For the respective methods the repeatability (n=10), given as coefficient of variation, ranged from 3% (acrylamide content of 550 μg kg−1) to 12% (acrylamide content of 8 μg kg−1) depending on the food matrix. The repeatability (n=3) for different food samples spiked with acrylamide (5–1500 μg kg−1) ranged from 1 to 20% depending on the spiking level and the food matrix. The limit of quantification (referred to a signal-to-noise ratio of 9:1) was 30 μg kg−1 for HPLC–MS–MS and 5 μg kg−1 for GC–MS–MS. It could be demonstrated that measurement uncertainties were not only a result of analytical variability but also of inhomogeneity and stability of the acrylamide in food.  相似文献   

13.
Simple and rapid gas chromatographic (GC) method employing a high-resolution time-of-flight mass analyzer that enables direct analysis (no derivatization) of acrylamide in various heat-processed foodstuffs has been developed and validated. Co-isolation of acrylamide precursors such as sugars and asparagine, constituting the risk of results overestimation due to additional formation of analyte in hot GC injector, is avoided by the extraction with n-propanol followed by solvent exchange to acetonitrile (MeCN). Introduction of a novel purification strategy, dispersive solid phase extraction, based on addition of primary-secondary amine (PSA) sorbent into deffated extract in MeCN, provides a significant reduction of some abundant matrix co-extracts (mainly free fatty acids). Isotope dilution technique (d3-acrylamide as an internal standard) is employed for compensation of potential target analyte losses and/or matrix-inducted chromatographic response enhancement. Limits of quantifications (LOQs) ranged between 15 and 40 μg kg−1 and recoveries were between 97 and 108% depending on the examined food matrix. The repeatability of measurements (expressed as relative standard deviation, R.S.D.) was as low as 1.9% for potato crisps containing acrylamide at a level of 1 mg kg−1. Slightly higher values (R.S.D. < 4.0%) were achieved for breakfast cereals and crisp bread with approximately 10 times lower content of this processing contaminant. Trueness of results generated by this new method was demonstrated via FAPAS® (Food Analysis Performance Assessment Scheme) interlaboratory proficiency tests.  相似文献   

14.
Phthalate esters (PAEs) are commonly used as nonreactive plasticisers in vinyl plastics to increase the flexibility of plastic polymers. Numerous studies have indicated that the PAEs as a class of endocrine-disrupting chemicals. In addition, the studies have also shown that a major source of human exposure to phthalates is the diet. To date, the largest problem in PAEs analysis is the high blank value because PAEs are widely used in various applications and products. To overcome this shortcoming, gas purge microsyringe extraction (GP-MSE) was applied, which established a new and low-blank-value analytical method for PAE analysis to analyse PAEs in foodstuffs. In this study, GP-MSE was used as a clean-up method, and the overall recoveries ranged from 85.7 to 102.6%, and the RSD was less than 10%. More importantly, this method can overcome the problem of the high blank value in PAE analysis. This method was applied for measuring PAEs in 78 foodstuffs. The results showed that a wide variety of PAE concentrations were found in the different groups, and the content of PAEs (varies from 658 to 1610 ng g−1 fresh weight) is greatest in seafood. The concentrations were in the following order: DEHP > DBP > DEP ≈ DMP > BBP ≈ DNOP. Finally, the daily intake of PAEs was estimated for adults based on the levels of PAEs in foodstuffs. The total EDIdiet values of 3.2 and 12.9 μg kg−1 bw d−1 were calculated for DEHP based on the mean and highest concentrations in foodstuffs, respectively.  相似文献   

15.
Both 3-monochloropropane-1,2-diol (3-MCPD) and acrylamide are contaminants found in heat-processed foods and their related products. A quantitative method was developed for the simultaneous determination of both contaminants in food by gas chromatography-triple quadrupole mass spectrometry (GC–MS/MS). The analytes were purified and extracted by the matrix solid-phase dispersion extraction (MSPDE) technique with Extrelut NT. A coupled column (a 3 m Innowax combined with a 30 m DB-5 ms) was developed to separate both compounds efficiently without derivatization. Triple quadrupole mass spectrometry in multiple reaction monitoring mode (MRM) was applied to suppress matrix interference and obtain good sensitivity in the determination of both analytes. The limit of detection (LOD) in the sample matrix was 5 μg kg−1 for 3-MCPD or acrylamide. The average recoveries for 3-MCPD and acrylamide in different food matrices were 90.5–107% and 81.9–95.7%, respectively, with the intraday relative standard deviations (RSDs) of 5.6–13.5% and 5.3–13.4%, respectively. The interday RSDs were 6.1–12.6% for 3-MCPD and were 5.0–12.8% for acrylamide. Both contaminants were found in samples of bread, fried chips, fried instant noodles, soy sauce, and instant noodle flavoring. Neither 3-MCPD nor acrylamide was detected in the samples of dairy products (solid or liquid samples) and non-fried instant noodles.  相似文献   

16.
Di-(2-ethyl-hexyl)phthalate (DEHP), nonylphenol, nonylphenol mono- and diethoxylates (NPEs) and polychlorinated biphenyls (PCBs) are organic pollutants in sewage sludge which have to be monitored in the European Union according to a future Sludge Directive. In the present work, an analytical method for the simultaneous extraction and determination of DEHP, NPEs and PCBs is proposed for the routine analysis of these compounds in sludge from wastewater treatment plants. All the compounds were simultaneously extracted by sonication with hexane and analysed by gas chromatography-mass spectrometry (GC-MS) in electronic impact mode. Recoveries achieved were 105% for DEHP, 61.4-88.6% for NPEs and 55.8-108.3% for PCBs with relative standard deviation bellow 10%. Limits of quantification were 65 μg kg−1 for DEHP, from 630 to 2504 μg kg−1 for NPEs and from 5.4 to 10.6 μg kg−1 for PCBs in dried sludge. The applicability of the proposed method was evaluated by the determination of these compounds in sludge from wastewater treatment plants in Seville (South Spain).  相似文献   

17.
This study presents the optimization and application of an analytical method based on the use of stir bar sorptive extraction (SBSE) gas chromatography coupled to mass spectrometry (GC–MS) for the ultra-trace analysis of POPs (Persistent Organic Pollutants) in Arctic ice. In a first step, the mass-spectrometry conditions were optimized to quantify 48 compounds (polycyclic aromatic hydrocarbons, brominated diphenyl ethers, chlorinated biphenyls, and organochlorinated pesticides) at the low pg/L level. In a second step, the performance of this analytical method was evaluated to determine POPs in Arctic cores collected during an oceanographic campaign. Using a calibration range from 1 to 1800 pg/L and by adjusting acquisition parameters, limits of detection at the 0.1–99 and 102–891 pg/L for organohalogenated compounds and polycyclic aromatic hydrocarbons, respectively, were obtained by extracting 200 mL of unfiltered ice water. α-hexachlorocyclohexane, DDTs, chlorinated biphenyl congeners 28, 101 and 118 and brominated diphenyl ethers congeners 47 and 99 were detected in ice cores at levels between 0.5 to 258 pg/L. We emphasise the advantages and disadvantages of in situ SBSE in comparison with traditional extraction techniques used to analyze POPs in ice.  相似文献   

18.
Zhou S  Zhang C  Wang D  Zhao M 《The Analyst》2008,133(7):903-909
Acrylamide, a toxic and carcinogenic compound, has been found to be present in a range of processed starchy foods. To prepare an effective immunogen compound for acrylamide, N-acryloxysuccinimide (NAS) was conjugated to bovine serum albumin (BSA) at a high molar ratio of 21.2:1. Antisera were obtained by immunization of rabbits with additional booster injections of the NAS-BSA conjugate after the regular process. The IgGs purified by an ammonium sulfate precipitation method were further fractionated with a BSA-immobilized immunoaffinity column. The affinity constant between the collected antibody and coated antigen (NAS-ovalbumin) is found to be 6.7 x 10(7) L mol(-1). Asparagine, the key precursor of acrylamide formation in foods, showed negligible cross-reactivity to the antibody. A biotin-avidin enzyme-linked immunosorbent assay (BA-ELISA) was developed and the optimum assay medium was found to be 0.1 mol L(-1) NaHCO(3) (pH 8.3, containing 0.5 mol L(-1) NaCl). The BA-ELISA afforded a practical sensitivity with a working range of 10-100,000 ng mL(-1) and a detection limit of 6 ng mL(-1). The assay was applied to detect acrylamide in potato fries and biscuits and the quantitative results were in good agreement with those obtained by the high-performance liquid chromatography method. This immunoassay will be very useful for monitoring acrylamide in food samples.  相似文献   

19.
Blackwell BR  Cai Q  Smith PN  Cobb GP 《Talanta》2011,85(3):1317-1323
Trenbolone acetate (TbA) is a potent synthetic anabolic steroid that was approved by the FDA as a growth promoter in beef cattle in 1987. Given the endocrine-modulating activity of TbA and its metabolites in all vertebrates, a sensitive and reliable analytical method is needed to detect TbA and related residues in environmental matrices. We have developed a method that incorporates solid phase extraction and liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the simultaneous determination of the three major TbA metabolites (trendione, 17β-trenbolone, 17α-trenbolone) in total suspended particulate matter (TSP) samples. Sample preparation involved pressurized liquid extraction followed by cleanup on solid-phase extraction cartridges. The procedure was optimized to obtain maximum recovery and minimum signal suppression/enhancement from matrix effects. Analytes were separated with a Phenomenex Gemini-NX C18 analytical column (150 mm × 2.0 mm, 3 μm particle size) using an aqueous methanol gradient at a flow rate of 0.2 mL/min. Column effluent underwent positive electrospray ionization (ESI). Two or more diagnostic product ions were acquired from analyte specific precursor ions for unambiguous confirmation and quantification. The method detection limit was 3.27-4.87 ng/g of particulate matter (PM). Method accuracy, determined with analyte recoveries, ranged between 68% and 117%, and method precision, expressed as relative standard deviation, was below 15% at spiked levels of 6.67, 33.3, and 167 ng/g PM. Analysis of TSP samples demonstrated the presence of the target species associated with PM in the vicinity of beef cattle feeding operations.  相似文献   

20.
An analytical method was developed using ultra-high-pressure liquid chromatography–triple quadrupole-tandem mass spectrometry (UHPLC–TQ-MS/MS) to simultaneously analyze 14 sulfonamides (SA) in 6 min. Despite the rapidity of the assay the system was properly re-equilibrated in this time. No carryover was observed even after high analyte concentrations. The instrumental detection limit based on signal-to-noise ratio (S/N) > 3, was below 1 pg/μL (5 pg on column) for all SAs except sulfachloropyridazine. Surface water, ground water, soil, and slurry manure contained in storage ponds in and around swine [Sus scrofa domesticus] rearing facilities were analyzed. Sample cleanup for ground water and surface water included using solid phase extraction (SPE) using Oasis® hydrophilic–lipophilic balance (HLB) cartridges. The soil and slurry manure required tandem strong anion exchange (SAX) and HLB solid phase extraction cartridges for sample cleanup. With few exceptions, the recoveries ranged from 60 to 100% for all matrices. The minimum detectable levels were below 2.0 ng/L for water, 30 ng/L for slurry manure, and 45 ng/kg for soil except for sulfachloropyridazine. The coefficient of variation (CV) was within 20% for most of the compounds analyzed. Using this method, sulfamethazine concentrations of 2250–5060 ng/L, sulfamethoxazole concentrations of 108–1.47 × 106 ng/L, and sulfathiazole concentrations of 785–1700 ng/L were found in the slurry manure. Sulfadimethoxine (2.0–32 ng/L), sulfamethazine (2.0–5.1 ng/L), and sulfamethoxazole (20.5–43.0 ng/L) were found in surface water and ground water. In top soil (0–15 cm), sulfamethazine ranged 34.5–663 ng/kg dry weight in those locations that received slurry manure as a nutrient; no SAs were found in the soil depths between 46 and 61 cm. The speed makes the method practical for medium to high throughput applications. The sensitivity and positive analyte identification make the method suitable for the demanding requirements for real world applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号