首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a micromixer for obtaining better efficiency of vortex induced electroosmotic mixing of non-Newtonian bio-fluids at a relatively higher flow rate, which finds relevance in many biomedical and biological applications. To represent the rheology of non-Newtonian fluid, we consider the Carreau model in this study, while the applied electric field drives the constituent components in the micromixer. We show that the spatial variation of the applied field, triggered by the topological change of the bounding surfaces, upon interacting with the non-uniform surface potential gives rise to efficient mixing as realized by the formation of vortices in the proposed micromixer. Also, we show that the phase-lag between surface potential leads to the formation of asymmetric vortices. This behavior offers better mixing performance following the appearance of undulation on the flow pattern. Finally, we establish that the assumption of a point charge in the paradigm of electroosmotic mixing, which is not realistic as well, under-predicts the mixing efficiency at higher amplitude of the non-uniform zeta potential. The inferences of the present analysis may guide as a design tool for micromixer where rheological properties of the fluid and flow actuation parameters can be simultaneously tuned to obtain phenomenal enhancement in mixing efficiency.  相似文献   

2.
This paper presents a study of EOF properties of plasma‐polymerized microchannel surfaces and the effects of protein (fibrinogen and lysozyme) adsorption on the EOF behavior of the surface‐modified microchannels. Three plasma polymer surfaces, i.e. tetraglyme, acrylic acid and allylamine, are tested. Results indicate EOF suppression in all plasma‐coated channels compared with the uncoated glass microchannel surfaces. The EOF behaviors of the modified microchannels after exposure to protein solutions are also investigated and show that even low levels of protein adsorption can significantly influence EOF behavior, and in some cases, result in the reversal of flow. The results also highlight that EOF measurement can be used as a method for detecting the presence of proteins within microchannels at low surface coverage (<1 ng/cm2 on glass). Critically, the results illustrate that the non‐fouling tetraglyme plasma polymer is able to sustain EOF. Comparison of the plasma‐polymerized surfaces with conventionally grafted polyelectrolyte surfaces demonstrates the stabilities of the plasma polymer films, enabling multiple EOF runs over 3 days without deterioration in performance. The results of this study clearly demonstrate that plasma polymers enable the surface chemistry of microfluidic devices to be tailored for specific applications. Critically, the deposition of the non‐fouling tetraglyme coating enables stable EOF to be induced in the presence of protein.  相似文献   

3.
Large gradients of physical variables near the channel walls are characteristic of EOF. The previous numerical simulations of EOFs with the lattice Boltzmann method (LBM) utilize uniform lattice and are not efficient, especially when the electric double layer (EDL) thickness is significantly smaller than the channel height. The efficient LBM simulation of EOF in microchannel calls for a nonuniform mesh which is dense in the EDL region and sparse in the bulk region. In this article, we formulate a radial basis function (RBF)-based interpolation supplemented LBM (ISLBM) to solve the governing equations of EOF, that is, the Poisson, Nernst–Planck, and Navier–Stokes equations, in a nonuniform mesh system. Unlike the conventional ISLBM, the RBF-ISLBM determines the prestreaming distribution functions by using the local RBF-based interpolation over circular supporting regions and is particularly suitable for nonuniform meshes. The RBF-ISLBM is validated by the EOFs in infinitely long and finitely long microchannels. The results show that the RBF-ISLBM possesses excellent robustness and accuracy. Finally, we use the RBF-ISLBM to simulate the EOFs with the hitherto highest electrokinetic parameter, κa, defined by the ratio of channel height a to EDL thickness κ−1, in LBM simulations of EOF.  相似文献   

4.
Chein R  Yang YC  Lin Y 《Electrophoresis》2006,27(3):640-649
In this study we present simple analytical models that predict the temperature and pressure variations in electrokinetic-driven microchannel flow under the Joule heating effect. For temperature prediction, a simple model shows that the temperature is related to the Joule heating parameter, autothermal Joule heating parameter, external cooling parameter, Peclet number, and the channel length to channel hydraulic diameter ratio. The simple model overpredicted the thermally developed temperature compared with the full numerical simulation, but in good agreement with the experimental measurements. The factors that affect the external cooling parameters, such as the heat transfer coefficient, channel configuration, and channel material are also examined based on this simple model. Based on the mass conservation, a simple model is developed that predicts the pressure variations, including the temperature effect. An adverse pressure gradient is required to satisfy the mass conservation requirement. The temperature effect on the pressure gradient is via the temperature-dependent fluid viscosity and electroosmotic velocity.  相似文献   

5.
A simple DNA diagnosis method using microfluidics has been developed which requires simple and straightforward procedures such as injection of sample and probe DNA solutions. This method takes advantage of the highly accurate control of fluids in microchannels, and is superior to DNA microarray diagnosis methods due to its simplicity, highly quantitative determination, and high-sensitivity. The method is capable of detecting DNA hybridization for molecules as small as a 20 mer. This suggests the difference in microfluidic behavior between single strand DNA (ssDNA) and double stranded DNA (dsDNA). In this work, influence of both the inertial force exerted on DNA molecules and the diffusion of DNA molecules was investigated. Based on the determination of these parameters for both ssDNA and dsDNA by experiments, a numerical model describing the phenomena in the microchannel was designed. Computational simulation results using this model were in good agreement with previously reported experimental results. The simulation results showed that appropriate selection of the analysis point and the design of microchannel structure are important to bring out the diffusion and inertial force effects suitably and increase the sensitivity of the detection of DNA hybridization, that is, the analytical performance of the microfluidic DNA chip.  相似文献   

6.
In this paper, a two-dimensional Stokes flow having particle size distribution ranging from 10 to 50 µm in a rectangular channel is simulated numerically with focus on the hydrodynamic forces. The results show that due to the disparity between the density of the fluid and particles, velocity domain of particles deviates from the fluid velocity domain and this phenomenon occurs significantly for the larger particles. Also, with the increase of Reynolds number, the volume fraction of dispersed phase near the bottom wall of the channel increases either. Compared to similar studies, this investigation employs numerical simulation of microparticulate flow and interparticle hydrodynamic forces with emphasis on the dispersed phase volume fraction in order to present the microchannel flow properties.  相似文献   

7.
Park HM  Lee WM 《Lab on a chip》2008,8(7):1163-1170
Many lab-on-a-chip based microsystems process biofluids such as blood and DNA solutions. These fluids are viscoelastic and show extraordinary flow behaviors, not existing in Newtonian fluids. Adopting appropriate constitutive equations these exotic flow behaviors can be modeled and predicted reasonably using various numerical methods. In the present paper, we investigate viscoelastic electroosmotic flows through a rectangular straight microchannel with and without pressure gradient. It is shown that the volumetric flow rates of viscoelastic fluids are significantly different from those of Newtonian fluids under the same external electric field and pressure gradient. Moreover, when pressure gradient is imposed on the microchannel there appear appreciable secondary flows in the viscoelastic fluids, which is never possible for Newtonian laminar flows through straight microchannels. The retarded or enhanced volumetric flow rates and secondary flows affect dispersion of solutes in the microchannel nontrivially.  相似文献   

8.
A developed mathematical model for calculating potential distribution inside the electrical double layer is explored in this paper based on the Poisson-Boltzmann equation. By modifying the ion concentration, we numerically simulated the potential profile inside the actual electrical double layer according to the zeta potential. Then a theoretical analysis on the streamwise electroosmotic velocity in microscale channel is presented. Furthermore, the expression of the electroosmotic velocity is significantly suppressed after considering the Helmboltz-Smolucbowski equation boundary conditions. The results show that the calculated electroosmotic values basically agree with the experimental ones. Therefore, this provides the data for micro- and nano-channels’ electrophoretic transport, as well as separation of neutral and charged electrolyte.  相似文献   

9.
In this paper we develop a method for the determination of the zeta potential zeta and the dielectric constant epsilon by exploiting velocity measurements of the electroosmotic flow in microchannels. The inverse problem is solved through the minimization of a performance function utilizing the conjugate gradient method. The present method is found to estimate zeta and epsilon with reasonable accuracy even with noisy velocity measurements.  相似文献   

10.
Summary Based on the Einstein-Nernst equation, describing the relation between diffusion coefficient and ionic mobility, and expression for the plate height and plate number can be obtained which is independent of the diffusion coefficient. This approach was supported by experimental data, obtained from anionic and cationic solutes. An expression for the electrophoretic resolution is introduced that is also independent on diffusion coefficients. The effect of electro-osmotic flow on the separation of anions and cations based on the expressions derived for the plate number and the resolution is discussed.  相似文献   

11.
Electroosmotic flow is an efficient transportation technology driven by applying an external electric field across the microchannel, which has a great potential for future application. This work is presented to study the unsteady electroosmotic flow of viscoelastic fluids combined with a constant pressure gradient and a vertical magnetic field through a parallel plate microchannel. For the reason that the upper and bottom walls of the parallel plate microchannel in microfluidic devices can be made of different materials, this leads to different hydrophobic properties, asymmetric zeta wall potentials, and different slip boundary conditions. The Navier slip model with different slip coefficients at walls is considered. The generalized Maxwell fluid with fractional derivative is adopted for the constitutive equation of the fluid. The analytical and numerical solutions of velocity are derived by employing the integral transform method and finite difference method, respectively. Excellent agreement is found between the numerical solutions and analytical solutions. Finally, the effects of fractional parameter , relaxation time , slip coefficients and , the ratio of wall zeta potentials , Hartmann number , and electrical field strength parameter on velocity profiles are interpreted graphically in detail.  相似文献   

12.
Under certain conditions, the velocity field is similar to the electric field for electroosmotic flow (EOF) inside a channel. There was a disagreement between investigators on the necessity of the infinitesimal-Reynolds-number condition for the similarity when the Helmholtz-Smoluchowski relation is applied throughout the boundaries. What is puzzling is a recent numerical result that showed, contrary to the conventional belief, an evident Reynolds number dependence of the EOF. We show here that the notion that the infinitesimal-Reynolds-number condition is required originates from the misunderstanding that the EOF is the Stokes flow. We point out that the EOF becomes the potential flow when the Helmholtz-Smoluchowski relation is applied at the boundaries. We carry out a numerical simulation to investigate the effect of finiteness of the Debye length and the vorticity layer inherently existing at the channel wall. We show that the Reynolds number dependence of the previous numerical simulation resulted from the finiteness of the Debye length and subsequent convective transport of vorticity toward the bulk flow. We discuss in detail how the convection of vorticity occurs and what factors are involved in the transport process, after carrying out the simulation for different Reynolds numbers, Debye lengths, corner radii, and geometries.  相似文献   

13.
The decay of peroxynitrite [O=NOO(-), oxoperoxonitrate(1-)] was examined as a function of concentration (0.050-2.5 mM), temperature (5-45 degrees C), and pH (2.2-10.0). Below 5 degrees C and pH 7, little amounts of the decomposition products nitrite and dioxygen are formed, even when the peroxynitrite concentration is high (2.5 mM). Instead, approximately > or =90% isomerizes to nitrate. At higher pH, decomposition increases at the expense of isomerization, up to nearly 80% at pH 10.0 at 5 degrees C and 90% at 45 degrees C. Much less nitrite and dioxygen per peroxynitrite are formed when the peroxynitrite concentration is lower; at 50 microM and pH 10.2, < or =40% decomposes. In contrast to two other reports (Pfeiffer, S.; Gorren, A. C. F.; Schmidt, K.; Werner, E. R.; Hansert, B.; Bohle, D. S.; Mayer, B. J. Biol. Chem. 1997, 272, 3465-3470, and Coddington, J. W.; Hurst, J. K.; Lymar, S. V. J. Am. Chem. Soc. 1999, 121, 2438-2443), we find that the extent of decomposition is dependent on the peroxynitrite concentration.  相似文献   

14.
In the analysis of electroosmotic flows, the internal electric potential is usually modeled by the Poisson-Boltzmann equation. The Poisson-Boltzmann equation is derived from the assumption of thermodynamic equilibrium where the ionic distributions are not affected by fluid flows. Although this is a reasonable assumption for steady electroosmotic flows through straight microchannels, there are some important cases where convective transport of ions has nontrivial effects. In these cases, it is necessary to adopt the Nernst-Planck equation instead of the Poisson-Boltzmann equation to model the internal electric field. In the present work, the predictions of the Nernst-Planck equation are compared with those of the Poisson-Boltzmann equation for electroosmotic flows in various microchannels where the convective transport of ions is not negligible.  相似文献   

15.
We consider the stability of a thin liquid film with a free charged surface resting on a solid charged substrate by performing a general Orr-Sommerfeld (O-S) analysis complemented by a long-wave (LW) analysis. An externally applied field generates an electroosmotic flow (EOF) near the solid substrate and an electrophoretic flow (EPF) at the free surface. The EPF retards the EOF when both the surfaces have the same sign of the potential and can even lead to the flow reversal in a part of the film. In conjunction with the hydrodynamic stress, the Maxwell stress is also considered in the problem formulation. The electrokinetic potential at the liquid-air and solid-liquid interfaces is modelled by the Poisson-Boltzmann equation with the Debye-Hückel approximation. The O-S analysis shows a finite-wavenumber shear mode of instability when the inertial forces are strong and an LW interfacial mode of instability in the regime where the viscous force dominates. Interestingly, both the modes are found to form beyond a critical flow rate. The shear (interfacial) mode is found to be dominant when the film is thick (thin), the electric field applied is strong (weak), and the zeta-potentials on the liquid-air and solid-liquid interfaces are high (small). The LW analysis predicts the presence of the interfacial mode, but fails to capture the shear mode. The change in the propagation direction of the interfacial mode with the zeta-potential is predicted by both O-S and LW analyses. The parametric range in which the LW analysis is valid is thus demonstrated.  相似文献   

16.
This paper presents a fundamental study of particle electrokinetic focusing in a single microchannel constriction. Through both experiments and simulations, we demonstrate that such dielectrophoresis‐induced particle focusing can be implemented in a much smaller magnitude of DC‐biased AC electric fields (10 kV/m in total) as compared to pure DC electric fields (up to 100 kV/m). This is attributed to the increase in the ratio of cross‐stream particle dielectrophoretic velocity to streamwise electrokinetic velocity as only the DC field component contributes to the latter. The effects of the 1 kHz frequency AC to DC electric field ratio on particle trajectories and velocity variations through the microchannel constriction are also examined, which are found to agree with the simulation results.  相似文献   

17.
The influence of Joule heating on electroosmotic flow velocity, the retention factor of neutral analytes, and separation efficiency in capillary electrochromatography was investigated theoretically and experimentally. A plot of electrical current against the applied electrical field strength was used to evaluate the Joule heating effect. When the mobile phase concentration of Tris buffer exceeded 5.0 mM in the studied capillary electrochromatography systems using particulate and monolithic columns (with an accompanying power level of heat dissipation higher than 0.35 W/m), the Joule heating effect became clearly noticeable. Theoretical models for describing the variation of electroosmotic flow velocity with increasing applied field strength and the change of retention factors for neutral analytes with electrical field strength at higher Tris buffer concentrations were analyzed to explain consequences of Joule heating in capillary electrochromatography. Qualitative agreement between experimental data and implications of the theoretical model analysis was observed. The decrease of separation efficiency in capillary electrochromatography with macroporous octadecylsilica particles at high buffer concentration can be also attributed to Joule heating mainly via the increased axial diffusion of the analyte molecules and dispersion of solute bands by a nonuniform electroosmotic flow profile over the column cross-section. However, within a moderate temperature range, the contribution of the macroscopic velocity profile in the column arising from radial temperature gradients is insignificant.  相似文献   

18.
Data on the viscosity η of moderately concentrated solutions of polystyrene are reported. Several solvents were investigated, including cyclopentane solutions over a temperature span between θU = 19.5°C and θL = 154.5°C. The data were analyzed in terms of a relation giving η as a function of αφM, where αφ is the expansion factor for the chain dimensions in a solution with volume fraction φ of polymer with molecular weight M. It is shown that values of αφ so determined decrease as ? lnαφ/? lnφ = (1 ? 2μ)/6μ for φ greater than φ* = 0.2M/s3 for moderately concentrated solutions, where s is the root-mean-square radius of gyration and μ = ? ln[η]/? lnM with [η] the intrinsic viscosity.  相似文献   

19.
20.
Accurate liquid flow control is important in most chemical analyses. In this work, the measurement of liquid flow in microliters per minute was performed, and feedback control of the flow rate was examined. The flow sensor was arranged on a channel made in a polydimethylsiloxane (PDMS) block. The center of the channel was cooled by a miniature Peltier device, and the change in temperature balance along the channel formed by the flow was measured by two temperature sensors. Using this flow sensor, feedback flow control was examined with two pumping methods. One was the electroosmotic flow method, made by applying a high voltage (HV) between the reagent and waste reservoirs; the other was the piezo valve method, in which a micro-valve-seat was fabricated in a PDMS cavity with a silicone diaphragm. The latter was adopted for a micro gas analysis system (microGAS) for measuring atmospheric H2S and SO2. The obtained baselines were stable, and better limits of detection were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号