共查询到20条相似文献,搜索用时 15 毫秒
1.
W. Van Borm A. Lamberty Ph. Quevauviller 《Fresenius' Journal of Analytical Chemistry》1999,365(4):361-363
In order to control the quality of trace element determinations in polymer, the Standards, Measurements and Testing Programme
(formerly BCR) of the European Commission has started a project of which the final aim is to certify polymer reference materials
for their contents of a range of trace elements. The first part of this project consisted in an interlaboratory study which
aimed at testing the feasibility of preparation of candidate polymer reference materials and to detect and remove most of
the pitfalls observed in trace element determinations. This paper presents the results of this interlaboratory study carried
out prior to the certification campaign.
Received: 22 April 1999 / Revised: 21 June 1999 / Accepted: 21 June 1999 相似文献
2.
W. Van Borm A. Lamberty Ph. Quevauviller 《Analytical and bioanalytical chemistry》1999,365(4):361-363
In order to control the quality of trace element determinations in polymer, the Standards, Measurements and Testing Programme
(formerly BCR) of the European Commission has started a project of which the final aim is to certify polymer reference materials
for their contents of a range of trace elements. The first part of this project consisted in an interlaboratory study which
aimed at testing the feasibility of preparation of candidate polymer reference materials and to detect and remove most of
the pitfalls observed in trace element determinations. This paper presents the results of this interlaboratory study carried
out prior to the certification campaign.
Received: 22 April 1999 / Revised: 21 June 1999 / Accepted: 21 June 1999 相似文献
3.
Analytical methods for inorganic arsenic in water: a review 总被引:2,自引:0,他引:2
Inorganic arsenic, a term which encompasses both As (III) and As (V) species, constitutes the highest toxicological risk associated with arsenic in water in contrast to the organic arsenic species. Different determination methods of inorganic arsenic have been developed over 40 years providing timely and efficient risk assessments of inorganic arsenic contamination world wide. The current report gives an overview of more than 100 papers, regarding existing methods for analysis of As (III) and As (V) in water, including various spectroscopic, ICP and electrochemical techniques. Recent field portable analytical applications are also reviewed. 相似文献
4.
青藏高原白刺、枸杞和沙棘果粉中微量元素含量比较研究 总被引:2,自引:0,他引:2
采用原子吸收光谱法、氢化物原子荧光光谱法对青藏高原白刺、枸杞、沙棘果粉中的13种元素进行了分析测定。结果表明,3种植物果粉中的Cu、Fe、Mn、Zn、K、Ca、Na、Mg等8种元素含量丰富且差异显著,Pb、As、Cr、Cd、Hg等5种重金属元素含量均较低,为3种植物资源深度开发利用提供了基础数据。 相似文献
5.
Within the last decade, liquid-phase microextraction (LPME) and micro-solid phase extraction (μSPE) approaches have emerged as substitutes for conventional sample processing procedures for trace metal assays within the framework of green chemistry. This review surveys the progress of the state of the art in simplification and automation of microextraction approaches by harnessing to the various generations of flow injection (FI) as a front end to atomic absorption spectrometry (AAS), atomic fluorescence spectrometry (AFS) or inductively coupled plasma atomic emission spectrometry or mass spectrometry (ICP-AES/MS). It highlights the evolution of flow injection analysis and related techniques as vehicles for appropriate sample presentation to the detector and expedient on-line matrix separation and pre-concentration of trace levels of metals in troublesome matrices. Rather than being comprehensive this review is aimed at outlining the pros and cons via representative examples of recent attempts in automating green sample preparation procedures in an FI or sequential injection (SI) mode capitalizing on single-drop microextraction, dispersive liquid-phase microextraction and advanced sorptive materials including carbon and metal oxide nanoparticles, ion imprinted polymers, superparamagnetic nanomaterials and biological/biomass sorbents. Current challenges in the field are identified and the synergetic combination of flow analysis, nanotechnology and metal-tagged biomolecule detection is envisaged. 相似文献
6.
Maria Goreti R. Vale Bernhard Welz 《Spectrochimica Acta Part B: Atomic Spectroscopy》2002,57(12):1821-1834
The literature on the determination of Tl in environmental samples using electrothermal atomization (ETA) and vaporization (ETV) techniques has been reviewed with special attention devoted to potential interferences and their control. Chloride interference, which is due to the formation of the volatile monochloride in the condensed phase, is the most frequently observed problem. Due to its high dissociation energy (88 kcal/mol), TlCl is difficult to dissociate in the gas phase and is easily lost. The best means of controlling this interference in ETA is atomization under isothermal conditions according to the stabilized temperature platform furnace concept, and the use of reduced palladium as a modifier. An alternative approach appears to be the ‘fast furnace’ concept, wherein both the use of a modifier and the pyrolysis stage are omitted. This concept requires an efficient background correction system, and high-resolution continuum-source atomic absorption spectrometry (HR-CS AAS) appears to offer the best results. This chloride interference can also cause significant problems when ETV techniques are used. Among the spectral interferences found in the determination of thallium are those due to Pd, the most efficient modifier, and Fe, which is frequently found at high concentrations in environmental samples. Both interferences are due to nearby atomic lines, and are observed only when deuterium background correction and relatively high atomization temperatures are used. A more serious spectral interference is that due to the molecular absorption spectrum of SO2, which has a maximum around the Tl line and exhibits a pronounced rotational fine structure. HR-CS AAS again showed the best performance in coping with this interference. 相似文献
7.
Ricardo Q. Aucélio Roseli Martins de SouzaReinaldo Calixto de Campos Norbert MiekeleyCarmem L. Porto da Silveira 《Spectrochimica Acta Part B: Atomic Spectroscopy》2007
The determination of trace metals in lubricating oils using atomic spectrometric methods is reviewed. The importance of such analyses for technical diagnostics as well as the specific sample characteristics related to the analyte form (metallo-organic and metal particles) is discussed. Problems related to sample pre-treatment for appropriate sample introduction and calibration are addressed as well as the strategies to overcome them. Recent trends aimed at simplifying sample manipulation are presented. The applications and scope of AAS, ICP OES and ICP MS techniques for the determination of trace metals in lubricating oil is individually discussed, as well as some present instrumental trends. 相似文献
8.
A new microflow injection chemiluminescence (μFI-CL) system was described for the determination of cisplatin in human serum. By using the microchip with double spiral channel configuration, the sensitivity was greatly enhanced due to more efficient mixing of the analyte and reagent solutions. Experimental results revealed that common ions in human serum, such as Mn2+, Co2+, Fe3+, Cu2+, Zn2+, Ni2+, Na+, K+, Ca2+, Cl−, NO3−, Ac−, CO32−, PO43−, SO42− did not cause interference with the detection of Pt(II) by using 1,10-phenanthroline as the masking agent. Under the optimized conditions, a linear calibration curve (R2 = 0.998) over the range 2.0 × 10−8 to 2.0 × 10−6 mol L−1 was obtained with the detection limit of 1.24 × 10−9 mol L−1. The relative standard deviation was found to be 3.46% (n = 12) for 2.0 × 10−7 mol L−1. The sample consumption was only 2 μL with the sample throughput of 72 h−1. It had been used for trace platinum determination in cisplatin injection and human serum samples after the dosage of cisplatin. The recovery varied from 97.6 to 103.9%. The results proved that the proposed μFI-CL system had the advantages of high sensitivity and precision, low sample and reagents consumption, and high analytical throughput. 相似文献
9.
Othman A. Farghaly 《Microchemical Journal》2003,75(2):119-131
Tap water samples (Assiut city, lie in the middle north of upper Egypt, approx. 370 km from Cairo, January-March, 2002) were taken from the eight sampling sites of different locations at Assiut city. The samples are analyzed to determine the total content of cadmium, copper, lead and zinc by differential pulse anodic stripping voltammetry (DPASV) while nickel and cobalt are determined by a new simple differential pulse adsorptive stripping voltammetry (DPAdSV), using dimethylglyoxime (DMG) as the complexing agent. This method uses sodium sulfite as the supporting electrolyte, which facilitates the removal of oxygen interference without the traditional necessity of purging with inert gas. The effect of various parameters was studied using DPASV (for Cd, Pb, Cu and Zn) and AdSV (for Ni and Co) methods. Subsequently, under the so found experimental conditions, the stability of calibration curves and the detection limits (μg/l) have been determined. The data achieved (for all metals utility) are comparable to those measured by the graphite furnace atomic absorption spectrophotometric (GF-AAS) method. The effects of the interferences between these metal ions have been investigated. Moreover, the effect of storage was discussed and the obtained results were compared favorably with standard official methods. Statistical analysis of the database exhibits applicability and the accuracy of the techniques. The results obtained from the two techniques (Voltammetry and GF-AAS) are in very good agreements in the most tap water samples. 相似文献
10.
A.R. Timerbaev 《Trends in analytical chemistry : TRAC》2011,30(7):1120
Interactions of therapeutic drugs containing metals with proteins are known to exert a great impact on the mode of action of these compounds, including drug metabolism, delivery, cell processing, and targeting. Modern analytical techniques applied to proteomic studies of metallodrugs may improve our understanding of accompanying biochemical processes, which is essential for the efficiency of treatment, the proper dosing of established metal-based cancerostatic agents, and the design and development of new drugs. Such methods basically rely on the application of mass spectrometry (or a few alternative detection techniques) for species identification, characterization, quantification, and measuring the binding parameters, directly or after separation of free parent drug and protein-bound drug fractions, using the principles of electrophoresis, chromatography or ultrafiltration.This review focuses on the development and recent advances in the field of “metallodrug proteomics” from the implementation of advanced analytical methodologies. Also addressed are emerging issues of metallodrug binding toward cellular protein targets and within real-world biological samples. 相似文献
11.
《Surface and interface analysis : SIA》2005,37(5):522-523
This international standard specifies chemical methods for the collection of iron and/or nickel from the surface of silicon‐wafer working reference materials by the vapour‐phase decomposition method or the direct acid droplet decomposition method. The determination of the elements collected may be carried out by total‐reflection x‐ray fluorescence spectroscopy, as well as by graphite‐furnace atomic absorption spectroscopy or inductively coupled plasma mass spectroscopy. This international standard applies to iron and/or nickel atomic surface densities from 6 × 109 to 5 × 1011 atoms cm?2. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
12.
Paola A. Mello Juliana S.F. Pereira Marcia F. Mesko Juliano S. Barin Erico M.M. Flores 《Analytica chimica acta》2012
In this review sample preparation strategies used for crude oil digestion in last ten years are discussed focusing on further metals and non-metals determination. One of the main challenges of proposed methods has been to overcome the difficulty to bring crude oil samples into solution, which should be compatible with analytical techniques used for element determination. On this aspect, this review summarizes the sample preparation methods for metals and non metals determination in crude oil including those based on wet digestion, combustion, emulsification, extraction, sample dilution with organic solvents, among others. Conventional methods related to wet digestion with concentrated acids or combustion are also covered, with special emphasis to closed systems. Trends in sample digestion, such as microwave-assisted digestion using diluted acids combined with high-efficiency decomposition systems are discussed. On the other hand, strategies based on sample dilution in organic solvents and procedures recommended for speciation analysis are reported as well as the use of direct analysis in view of the recent importance for crude oil field. A compilation concerning sample preparation for crude oil provided by official methods as well as certified reference materials available for accuracy evaluation is also presented and discussed. 相似文献
13.
Mariana A. Vieira Patricia Grinberg Cláudio R.R. Bobeda Mariela N.M. Reyes Reinaldo C. Campos 《Spectrochimica Acta Part B: Atomic Spectroscopy》2009
In recent years, knowledge of the different chemical forms of the elements has gained increasing importance. There has been significant progress in methods that hyphenate chromatographic separations with atomic spectrometry. These hyphenated methods can provide the most complete information on the species distribution and even structure. However, they can be lengthy, relatively costly and difficult to bring to the routine. On the other hand, it is important to remember that chromatographic techniques represent only a minor part of the separation procedures available and, in certain cases, the application of basic chemistry to sample treatments can give quantitative information about specific chemical forms. In this sense, non-chromatographic procedures can provide methods that offer sufficient information on the elemental speciation for a series of situations. Moreover, these non-chromatographic strategies can be less time consuming, more cost effective and available, and present competitive limits of detection. Thus, non-chromatographic speciation analysis continues to be a promising research area and has been applied to the development of several methodologies that facilitate this type of analytical approach. In view of their importance, the present work overviews and discusses different non-chromatographic methods as alternatives for the speciation analysis of clinical, environmental and food samples using atomic spectrometry for detection. 相似文献
14.
We review recent progress in preconcentration strategies associated to vapor generation techniques coupled to atomic spectrometric (VGT-AS) for specific chemical species detection. This discussion focuses on the central role of different preconcentration approaches, both before and after VG process. The former was based on the classical solid phase and liquid–liquid extraction procedures which, aided by automation and miniaturization strategies, have strengthened the role of VGT-AS in several research fields including environmental, clinical, and others. We then examine some of the new vapor trapping strategies (atom-trapping, hydride trapping, cryotrapping) that entail improvements in selectivity through interference elimination, but also they allow reaching ultra-low detection limits for a large number of chemical species generated in conventional VG systems, including complete separation of several species of the same element. This review covers more than 100 bibliographic references from 2009 up to date, found in SCOPUS database and in individual searches in specific journals. We finally conclude by giving some outlook on future directions of this field. 相似文献
15.
Carmen Ibáñez-PalominoAuthor Vitae José Fermín López-SánchezAuthor VitaeAngels Sahuquillo 《Analytica chimica acta》2012
The usefulness of a certified reference material (CRM) for analytical method validation and quality control purposes is attributed mainly to its key properties, namely homogeneity and stability. However, it is also advisable to select suitable CRMs in terms of representativeness. To assess the representativeness of a CRM for analytical mercury speciation, a number of aspects must be considered in regard to the routine samples analyzed: the origin of the matrix, the type of mercury species and the level of concentration. 相似文献
16.
C. Herrero Latorre J. Barciela GarcíaAuthor VitaeS. García MartínAuthor Vitae R.M. Peña CrecenteAuthor Vitae 《Analytica chimica acta》2013
Selenium is an essential element for the normal cellular function of living organisms. However, selenium is toxic at concentrations of only three to five times higher than the essential concentration. The inorganic forms (mainly selenite and selenate) present in environmental water generally exhibit higher toxicity (up to 40 times) than organic forms. Therefore, the determination of low levels of different inorganic selenium species in water is an analytical challenge. Solid-phase extraction has been used as a separation and/or preconcentration technique prior to the determination of selenium species due to the need for accurate measurements for Se species in water at extremely low levels. The present paper provides a critical review of the published methods for inorganic selenium speciation in water samples using solid phase extraction as a preconcentration procedure. On the basis of more than 75 references, the different speciation strategies used for this task have been highlighted and classified. The solid-phase extraction sorbents and the performance and analytical characteristics of the developed methods for Se speciation are also discussed. 相似文献
17.
The study presents a new analytical method for speciation analysis in fractionation of aluminium fluoride complexes and free Al3+ in soil samples. Aluminium speciation was studied in model solutions and soil extract samples by means of high performance ion chromatography (HPIC) with UV-VIS detection using post-column reaction with tiron for the separation and detection of aluminium fluoride complex and Al3+ forms during one analysis. The paper presents particular stages of the chromatographic process optimization involving selecting the appropriate eluent strength, type of elution or concentration and quantity of derivatization reagent. HPIC was performed on a bifunctional analytical column Dionex IonPac CS5A. The use of gradient elution and the eluents A: 1 M NH4Cl and B: water acidified to pH of eluent phase, enabled full separation of fluoride aluminium forms as AlF2+, AlF30, AlF4− (first signal), AlF2+ (second signal) and form Al3+ in a single analytical procedure. The proposed new method HPIC-UVVIS was applied successfully in the quantitative and qualitative analysis of soil samples. 相似文献
18.
In recent years the number of environmental applications of elemental speciation analysis using inductively coupled plasma mass spectrometry (ICP-MS) as detector has increased significantly. The analytical characteristics, such as extremely low detection limits (LOD) for almost all elements, the wide linear range, the possibility for multi-elemental analysis and the possibility to apply isotope dilution mass spectrometry (IDMS) make ICP-MS an attractive tool for elemental speciation analysis. Two methodological approaches, i.e. the combination of ICP-MS with high performance liquid chromatography (HPLC) and gas chromatography (GC), dominate the field. Besides the investigation of metals and metalloids and their species (e.g. Sn, Hg, As), representing “classic” elements in environmental science, more recently other elements (e.g. P, S, Br, I) amenable to ICP-MS determination were addressed. In addition, the introduction of isotope dilution analysis and the development of isotopically labeled species-specific standards have contributed to the success of ICP-MS in the field. The aim of this review is to summarize these developments and to highlight recent trends in the environmental application of ICP-MS coupled to GC and HPLC. 相似文献
19.
C. Herrero Latorre J. Álvarez MéndezAuthor VitaeJ. Barciela GarcíaAuthor Vitae S. García MartínAuthor VitaeR.M. Peña CrecenteAuthor Vitae 《Analytica chimica acta》2012
New materials have significant impact on the development of new methods and instrumentation for chemical analysis. From the discovery of carbon nanotubes in 1991, single and multi-walled carbon nanotubes – due to their high adsorption and desorption capacities – have been employed as sorption substrates in solid-phase extraction for the preconcentration of metal species from diverse matrices. Looking for successive improvements in sensitivity and selectivity, in the past few years, carbon nanotubes have been utilized as sorbents for solid phase extraction in three different ways: like as-grown, oxidized and functionalized nanotubes. In the present paper, an overview of the recent trends in the use of carbon nanotubes for solid phase extraction of metal species in environmental, biological and food samples is presented. The determination procedures involved the adsorption of metals on the nanotube surface, their quantitative desorption and subsequent measurement by means of atomic spectrometric techniques such as flame atomic absorption spectrometry, electrothermal atomic absorption spectrometry or inductively coupled plasma atomic emission spectrometry/mass spectrometry, among others. Synthesis, purification and types of carbon nanotubes, as well as the diverse chemical and physical strategies for their functionalization are described. Based on 140 references, the performance and general properties of the applications of solid phase extraction based on carbon nanotubes for metal species atomic spectrometric determination are discussed. 相似文献
20.
Inorganic arsenic (As) displays extreme toxicity and is a class A human carcinogen. It is of interest to both analytical chemists and environmental scientists. Facile and sensitive determination of As and knowledge of the speciation of forms of As in aqueous samples are vitally important. Nearly every nation has relevant official regulations on permissible limits of drinking water As content. The size of the literature on As is therefore formidable. The heart of this review consists of two tables: one is a compilation of principal official documents and major review articles, including the toxicology and chemistry of As. This includes comprehensive official compendia on As speciation, sample treatment, recommended procedures for the determination of As in specific sample matrices with specific analytical instrument(s), procedures for multi-element (including As) speciation and analysis, and prior comprehensive reviews on arsenic analysis. The second table focuses on the recent literature (2005–2013, the coverage for 2013 is incomplete) on As measurement in aqueous matrices. Recent As speciation and analysis methods based on spectrometric and electrochemical methods, inductively coupled plasma-mass spectrometry, neutron activation analysis and biosensors are summarized. We have deliberately excluded atomic optical spectrometric techniques (atomic absorption, atomic fluorescence, inductively coupled plasma-optical emission spectrometry) not because they are not important (in fact the majority of arsenic determinations are possibly carried out by one of these techniques) but because these methods are sufficiently mature and little meaningful innovation has been made beyond what is in the officially prescribed compendia (which are included) and recent reviews are available. 相似文献