首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
The modification of the liquid/liquid interface with solid phases is discussed in this article. Modified interfaces can be formed with molecular assemblies, but here attention is focussed on solid materials such as mesoscopic particles, or microporous and mesoporous membranes. Charge transfer across the modified liquid/liquid interface is considered in particular. The most obvious consequence of the introduction of such modifying components is their effect on the transport to, and the transfer of material across, the liquid/liquid interface, as measured voltammetrically for example. One particularly interesting reaction is interfacial metal deposition, which can also be studied under electrochemical control: the initial formation of metal nuclei at the interface transforms it from the bare, pristine state to a modified state with very different reactivity. Deposition at interfaces between liquids is compared and contrasted with the cases of metal deposition in bulk solution and conventional heterogeneous deposition on conducting solid surfaces. Comparison is also made with work on the assembly of pre-formed micron and nanometre scale solids at the liquid/liquid interface.  相似文献   

2.
Gu  Yaxiong  Chen  Ye  Dong  Yifan  Liu  Junjie  Zhang  Xianhao  Li  Mingzhi  Shao  Yuanhua 《中国科学:化学(英文版)》2020,63(3):411-418
The study of microscopic structure of a liquid/liquid interface is of fundamental importance due to its close relation to the thermodynamics and kinetics of interfacial charge transfer reactions.In this article,the microscopic structure of a non-polarizable water/nitrobenzene(W/NB) interface was evaluated by scanning ion conductance microscope(SICM).Using SICM with a nanometer-sized quartz pipette filled with an electrolyte solution as the probe,the thickness of this type of W/NB interface could be measured at sub-nanometer scale,based on the continuous change of ionic current from one phase to another one.The effects for thicknesses of the non-polarizable W/NB interfaces with different electrolyte concentrations,the Galvani potentials at the interface and the applied potentials on the probe were measured and systematically analyzed.Both experimental setups,that is an organic phase up and an aqueous down,and a reverse version,were employed to acquire the approach curves.These data were compared with those of an ideal polarizable interface under the similar experimental conditions,and several characteristics of non-polarizable interfaces were found.The thickness of a non-polarizable interface increases with the decrease of electrolyte concentration and the increase of applied potential,which is similar to the situation of a polarizable liquid/liquid interface.We also find that the Galvani potential across a non-polarizable interface can also influence the interfacial thickness,this phenomenon is difficult to observe when using polarizable interface.Most importantly,by the comparison of two kinds of liquid/liquid interfaces,we experimentally proved that much more excess ions are gathered in the space charge layer of non-polarizable interfaces than in that of polarizable interfaces.These results are consistent with the predictions of molecular dynamic simulations and X-ray reflectivity measurements.  相似文献   

3.
Oleate-stabilized silver colloids of 5-nm-diameter were adsorbed to a toluene/water interface, and surface enhanced Raman scattering (SERS) spectra from these colloids were measured under the total internal reflection (TIR) condition. From the observed spectra, we examined the states of oleate ions and toluene molecules on silver colloids at the liquid/liquid interfacial region. The TIR-SERS spectra of oleate ions showed stronger peaks of the carboxylate group and the ethylene group than those of alkyl chains. From these results, it was found that the oleate ions were adsorbed on the silver surface in two different ways at the liquid/liquid interface; the carboxylate group adsorbed in the organic phase side, while the ethylene group adsorbed in the aqueous phase side. The shifts of the toluene in the interfacial SERS spectra were identical to those of bulk toluene, though the relative intensities among the peaks were not same. This result suggested that the toluene was adsorbed with a weak interaction, but was significantly enhanced by the local electromagnetic field at the colloid surface.  相似文献   

4.
An investigation is reported on the interfacial properties of nanometric colloidal silica dispersions in the presence of a cationic surfactant. These properties are the result of different phenomena such as the particle attachment at the interface and the surfactant adsorption at the liquid and at the particle interfaces. Since the latter strongly influences the hydrophobicity/lipophilicity of the particle, i.e., the particle affinity for the fluid interfacial environment, all those phenomena are closely correlated. The equilibrium and dynamic interfacial tensions of the liquid/air and liquid/oil interfaces have been measured as a function of the surfactant and particle concentration. The interfacial rheology of the same systems has been also investigated by measuring the dilational viscoelasticity as a function of the area perturbation frequency. These results are then crossed with the values of the surfactant adsorption on the silica particles, indirectly estimated through experiments based on the centrifugation of the dispersions. In this way it has been possible to point out the mechanisms determining the observed kinetic and equilibrium features. In particular, an important role in the mixed particle-surfactant layer reorganization is played by the Brownian transport of particles from the bulk to the interface and by the surfactant redistribution between the particle and fluid interface.  相似文献   

5.
We consider the interaction between a disclination line of strength +/-1/2 and an interface between the uniaxial and isotropic phases of a nematic liquid crystal. We apply a recently developed set of interface conditions including a configurational force balance which generalizes the Gibbs-Thomson equation to account for the curvature elasticity of the uniaxial phase and the orientation dependence of the interfacial free-energy density. We consider a rectangular vessel containing both phases and a disclination. We formulate a relevant free-boundary problem and use numerical methods to determine equilibrium shapes of the interface. When the interfacial free-energy is constant, the shape of the interface is insensitive to whether the strength of the defect is +1/2 or -1/2 and to rotations of the director field consistent with the boundary conditions. Accounting for the dependence of the interfacial free-energy density on the angle between the interfacial unit normal field and the director field eliminates these degeneracies. In particular, when such dependence is taken into account, different solution branches are found, indicating the presence of a bifurcation. We find also that, depending on the magnitude of the anisotropic contribution to the interfacial free-energy density, the interaction between the disclination and the interface may be repulsive or attractive. When the interaction is repulsive, the disclination line positions itself at an energetically optimal distance adjacent to the interface. Otherwise, the uniaxial phase expels the disclination to the interface where a cusp forms.  相似文献   

6.
Equilibrium interfacial tension at the liquid/liquid interfaces for two chelating metal ion extractants, 2-hydroxy-5-nonylacetophenone oxime (HNAF) and 1-phenyldecane-1,3-dion (beta-diketone), two solvating extractants, trioctylphosphine oxide (TOPO) and tributyl phosphate (TBP), and a modifier, decanol, were obtained with a drop volume tensiometer. Moreover, four equimolar binary mixtures of extractant/extractant and extractant/modifier type were considered. The composition of the mixed adsorbed monolayer and the molecular interaction parameters beta were determined by the Rosen equation. It was found that in all the studied systems coadsorption exists; however, synergism in the reduction of interfacial tension was not observed. The obtained results indicate that in the case of three mixtures considered the composition of a mixed monolayer at the hydrocarbon/water interface was quite different from that in the bulk organic phase. Only for the TOPO/beta-diketone mixture were the compositions at the interface and in the bulk organic phase similar. The obtained results indicate that it is impossible to predict the composition of a mixed monolayer by taking into account the interfacial activity of individual components of the mixture. In some cases the compound shows lower interfacial activity (smaller efficiency and effectiveness of adsorption) and occupies a dominant position at the interface, regardless of the type of hydrocarbon used as the organic diluent.  相似文献   

7.
The chiral complexation of bilirubin (BR) with bovine and human serum albumin (BSA and HSA), and the aggregation of the complexes at the heptane+chloroform(5:1)/water interface were studied via UV/Vis absorption and circular dichroism (CD) measurements in combination with the centrifugal liquid membrane (CLM) method. The interfacial adsorptivities of BR, BSA and their complexes were also studied by performing interfacial tension measurements at the interface. The changes in the absorbances and the induced CD amplitudes of the interfacial BR-BSA complex provided insights into the mechanism of the conformational enantioselective complexation at the interface, and indicated that the chiral conversion induced by the complexation with BSA was from the P(+) form to the M(-) form of BR. The broadening of the 450 nm band and the appearance of a new shoulder at 474 nm further supported the formation of aggregates of the complexes at the interface. The dependence of the CD amplitude on the molar ratio of BSA to BR revealed that the composition of the complex was 1:1 BSA:BR. The probable interfacial reaction scheme was proposed, and the affinity constant of BR-BSA at the interface was found to be 4.67 x 10(8) M(-2). The interfacial complexation and aggregation of BR and HSA were weaker than those of the BR-BSA complex due to the different BR binding positions adopted for BSA and HSA and the binding effect of chloroform.  相似文献   

8.
Carbon nanotubes (CNTs)-mediated self-assembly of metal (Au and Ag) nanoparticles at the liquid/liquid interface in the form of a stable nanocomposite film is reported. The metallic luster results from the electronic coupling of nanoparticles, suggesting the formation of closely packed nanoparticle thin films. The interfacial film could be transferred to mica substrates and carbon-coated transmission electron microscopy (TEM) grids. The transferred films were very stable for a prolonged time. The samples were characterized by UV-vis spectroscopy, scanning electron microscopy (SEM), TEM, and X-ray photoelectron spectroscopy (XPS). SEM and TEM results show that the films formed at the liquid/liquid interface are indeed composite materials consisting of CNTs and nanoparticles. XPS measurements further indicate the presence of the interaction between nanoparticles and CNTs.  相似文献   

9.
Design and development of a dynamic interfacial pressure detector (DIPD) is reported. The DIPD measures the differential pressure as a function of time across the liquid-liquid interface of organic liquid drops (i.e., n-hexane) that repeatedly grow in water at the end of a capillary tip. Using a calibration technique based on the Young-Laplace equation, the differential pressure signal is converted, in real-time, to a relative interfacial pressure. This allows the DIPD to monitor the interfacial tension of surface active species at liquid-liquid interfaces in flow-based analytical techniques, such as flow injection analysis (FIA), sequential injection analysis (SIA) and high performance liquid chromatography (HPLC). The DIPD is similar in principle to the dynamic surface tension detector (DSTD), which monitors the surface tension at the air-liquid interface. In this report, the interfacial pressure at the hexane-water interface was monitored as analytes in the hexane phase diffused to and arranged at the hexane-water interface. The DIPD was combined with FIA to analytically measure the interfacial properties of cholesterol and Brij®30 at the hexane-water interface. Results show that both cholesterol and Brij®30 exhibit a dynamic interfacial pressure signal during hexane drop growth. A calibration curve demonstrates that the relative interfacial pressure of cholesterol in hexane increases as the cholesterol concentration increases from 100 to 10,000 μg ml−1. An example of the utility of the DIPD as a selective detector for a chromatographic separation of interface-active species is also presented in the analysis of cholesterol in egg yolk by normal-phase HPLC-DIPD.  相似文献   

10.
The molecular level properties of the liquid/liquid interface between water and CCl(4) are analysed in detail on the basis of molecular dynamics computer simulation. This analysis requires a full list of the molecules that are right at the interface in both phases. Such a list can be provided by the novel method for identifying truly interfacial molecules (ITIM). The full list of the truly interfacial molecules various properties (e.g., width, molecular level roughness) of the interface can be meaningfully analysed. The residence time of the molecules at the interface, the percolation of the water molecules at the interfacial layer as well as in the second layer beneath the surface, the preferred orientations of the interfacial water molecules and the dependence of these orientational preferences on the local curvature of the interface are also analysed and discussed in detail.  相似文献   

11.
Resonance Raman spectroscopy assisted by centrifugal liquid membrane/circular dichroism (CLM-CD) and UV/Vis absorption spectroscopies was applied to measure the binding state of bilirubin (BR) in the complex with bovine serum albumin (BSA) formed at a heptane/water interface. The bisignate Cotton effects in the interfacial CD spectra and the red shift and linewidth increase of the BR absorption band around 450 nm indicated the formation of the BR-BSA complex at the interface and the chiral conversion of BR molecules in the aggregates. The resonance Raman spectra of BR observed at the interface suggested that the interfacial BR-BSA complex formed during the initial 15 min after the contact of the two phases had a similar structure with that in solution, but after 15 min were forming aggregates coexisting with solid micro-particles. These experimental results strongly suggested that the chiral interconversion of BR from (P+) conformation to (M-) conformation in the interfacial complex was accompanied by aggregation of the BR-BSA complexes. In the present study, resonance Raman microscopic spectrometry was proved to be highly useful for characterizing the solid like aggregate formed at the liquid/liquid interface.  相似文献   

12.
The development of techniques to study the liquid–liquid interface is a major challenge. Spectroscopy in all its forms provides a powerful method of investigation, especially when combined with other optical techniques. Over the last 30 years, there have been significant developments in the methods for studying heterogeneous interfaces. As technology progresses, the sensitivity of existing techniques has been improved but there are major challenges still to be met, such as the measurement of interfacial dielectric constant and viscosity. This paper aims to summarise the use of spectroscopy to study molecular interactions at the liquid–liquid interface.  相似文献   

13.
The monitoring of heparin and its derivatives in blood samples is important for the safe usage of these anticoagulants and antithrombotics in many medical procedures. Such an analytical task is, however, highly challenging due to their low therapeutic levels in the complex blood matrix, and it still relies on classical, indirect, clot-based assays. Here we review recent progress in the direct electrochemical sensing of heparin and its analogs at liquid/liquid interfaces and polymeric membranes. This progress has been made by utilizing the principle of electrochemical ion transfer at the interface between two immiscible electrolyte solutions (ITIES) to voltammetrically drive the interfacial transfer of polyanionic heparin and monitoring the resulting ionic current as a direct measure of heparin concentration. The sensitivity, selectivity, and reproducibility of the ion-transfer voltammetry of heparin are dramatically enhanced compared to those of traditional potentiometry. This voltammetric principle was successfully applied for the detection of heparin in undiluted blood samples, and was used to develop highly sensitive ion-selective electrodes based on thin polymeric membranes that are intended for analytical applications beyond heparin detection. The mechanism of heparin recognition and transfer at liquid/liquid interfaces was assessed quantitatively via sophisticated micropipet techniques, which aided the development of a powerful ionophore that can extract large heparin molecules into nonpolar organic media. Moreover, the reversible potentiometric detection of a lethal heparin-like contaminant in commercial heparin preparations was achieved through the use of a PVC membrane doped with methyltridodecylammonium chloride, which enables charge density dependent polyanion selectivity.  相似文献   

14.
This publication presents a detailed experimental and theoretical study of mass transfer of triethylamine (TEA) across the n-decane/water interface. In preliminary investigations, the partition of TEA between n-decane and water is determined. Based on the experimental finding that the dissociation of TEA takes place in the aqueous and in the organic phase, we assume that the interfacial mass transfer is mainly affected by adsorption and desorption of ionized TEA molecules at the liquid/liquid interface. Due to the amphiphilic structure of the dissociated TEA molecules, a dynamic interfacial tension measurement technique can be used to experimentally determine the interfacial mass transport. A model-based approach, which accounts for diffusive mass transport in the finite liquid bulk phases and for adsorption and desorption of ionized TEA molecules at the interface, is employed to analyze the experimental data. In the equilibrium state, the interfacial tension of dissociated TEA at the n-decane/water interface can be adequately described by the Langmuir isotherm. The comparison between the theoretical and the experimental dynamic interfacial tension data reveals that an additional activation energy barrier for adsorption and desorption at the interface has to be regarded to accurately describe the mass transport of TEA from the n-decane phase into the aqueous phase. Corresponding adsorption rate constants can be obtained by fitting the theoretical predictions to the experimental data. Interfacial tension measurements of mass transfer from the aqueous into the organic phase are characterized by interfacial instabilities caused by Marangoni convection, which result in an enhancement of the transfer rate across the interface.  相似文献   

15.
Instability due to surfactant redistribution in a liquid membrane system consisting of two solutions, namely source and acceptor, separated by a layer of immiscible liquid is studied theoretically and experimentally. The transfer of a surfactant from a source phase to an acceptor phase is often accompanied by spontaneous nonlinear oscillations of electrical potential and/or interfacial tension. The oscillations can be generated at each of the membrane interfaces. Here a mechanism of oscillation, which develops at the membrane/acceptor phase interface, is proposed on the basis of direct numerical simulation of the system evolution. Performed experimental studies confirm the theoretical results.  相似文献   

16.
The effect of γ-radiation on gas-ionic liquid (IL) and water-IL interfacial stability was investigated. Three phosphonium-based ILs, which vary considerably in their viscosity, conductivity and miscibility with water, were examined. The gas phase above the IL samples (headspace gas) was analyzed using gas chromatography with a mass spectrometer detector while the changes in the IL and aqueous phases were followed by conductivity measurements and Raman spectroscopy. For the gas-IL systems, the headspace samples showed trace amounts of the radiolytic decomposition products of the ILs that were small and volatile enough to become airborne. The type of cover gas, air or Ar, had no effect on the gas speciation. Negligible changes in the conductivity and the Raman spectra of the IL phase due to irradiation indicate that γ-irradiation induces negligible chemical changes in the IL phase when it is in contact with a gas phase. For the water-IL systems, the initially immiscible layers slowly developed an interfacial emulsion layer, even in the absence of radiation. This layer started at the water-IL interface and then grew downwards, eventually converting the entire IL phase to an emulsion. Gamma-irradiation accelerated the conversion of the IL phase to an emulsion. The development of the emulsion layer was accompanied by changes in the conductivity and the Raman spectra of both the IL and water phases. Based on these results, a mechanism involving the formation of micelles at, or near, the water-IL interface has been proposed to explain the development of an emulsion layer. We also suggest that radiolytic decomposition of ILs produces surfactants that can accumulate at the interface and, even at low concentrations, accelerate the emulsification process.  相似文献   

17.
We report a wet-chemical method to make films by spontaneous assembly of passivated Ag nanoparticles at the organic-aqueous liquid interface. The interfacial films exhibit a blue opalescence and are characterized with transmission electron microscopy and UV-vis spectrophotometry. Measurements indicate that nanoparticles in the interfacial film can form superlattices and in some cases nanostructures.  相似文献   

18.
Finite element simulations were used to investigate the effect of a smooth variation of permittivity across a polarized liquid/liquid interface on the differential capacitance. The results show that a relative permittivity profile can account for the variation of ion solvation in the interfacial region, and therefore upon the diffuse double layer itself. The width and the symmetry of this profile across the interface are shown to be crucial parameters for interfacial distributions and fitting of capacitance data has been used to estimate the width of the interfacial region.  相似文献   

19.
Miniaturized liquid–liquid interfacial reactors offer enhanced surface area and rapid confinement of compounds of opposite solubility, yet they are unable to provide in situ reaction monitoring at a molecular level at the interface. A picoreactor operative at the liquid–liquid interface is described, comprising plasmonic colloidosomes containing Ag octahedra strategically assembled at the water‐in‐decane emulsion interface. The plasmonic colloidosomes isolate ultrasmall amounts of solutions (<200 pL), allowing parallel monitoring of multiple reactions simultaneously. Using the surface‐enhanced Raman spectroscopy (SERS) technique, in situ monitoring of the interfacial protonation of dimethyl yellow (p‐dimethylaminoazobenzene (DY)) is performed, revealing an apparent rate constant of 0.09 min?1 for the first‐order reaction. The presence of isomeric products with similar physical properties is resolved, which would otherwise be indiscernible by other analytical methods.  相似文献   

20.
Some new experimental methods for measuring the optical chirality of molecular aggregates formed at liquid–liquid interfaces have been reviewed. Chirality measurements of interfacial aggregates are highly important not only in analytical spectroscopy but also in biochemistry and surface nanochemistry. Among these methods, a centrifugal liquid membrane method was shown to be a highly versatile method for measuring the optical chirality of the liquid–liquid interface when used in combination with a commercially available circular dichroism (CD) spectropolarimeter, provided that the interfacial aggregate exhibited a large molar absorptivity. Therefore, porphyrin and phthalocyanine were used as chromophoric probes of the chirality of itself or guest molecules at the interface. A microscopic CD method was also demonstrated for the measurement of a small region of a film or a sheet sample. In addition, second-harmonic generation and Raman scattering methods were reviewed as promising methods for detecting interfacial optical molecules and measuring bond distortions of chiral molecules, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号