首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guo Z  Gai P  Hao T  Wang S  Wei D  Gan N 《Talanta》2011,83(5):305-1741
An electrochemiluminescence (ECL) enhancement method combined with solid-phase extraction has been developed for the determination of melamine in dairy products. It was found that melamine in a strong base solution is able to enhance the ECL of Ru(bpy)32+ at glass carbon electrode. The optimum experimental conditions for the determination of trace melamine by ECL, such as scan mode and scan rate of the applied potential, the type of buffer solutions and their pH conditions, were investigated. Under optimized conditions, the enhanced ECL intensity was linearly proportional to the logarithm of melamine concentration in the range of 0.01-1.0 ppb, and the detection limit was 0.003 ppb. The method has been successfully demonstrated to determine melamine in dairy products including liquid milk, yogurt and milk powder samples. The relative standard deviations ranging from 5.3% to 11.2% and the recoveries from 95.2% to 102.4% were acquired by this method. A possible mechanism for the ECL enhancement effect was also proposed.  相似文献   

2.
Chen Y  Lin Z  Sun J  Chen G 《Electrophoresis》2007,28(18):3250-3259
An electrochemiluminescent (ECL) detection system in CE with an electrically heated carbon paste electrode (CPE) was developed. This CPE could be heated by a 100 kHz alternating current (ac) generated from a function generator, and the temperature of the electrode (Te) could be controlled. To evaluate the feasibility and reliability of this system, the electrochemically generated Ru(bpy)(3) (3+)-based ECL reaction was used for detection of triethylamine (TEA) and tri-n-propylamine (TPrA). Ru(bpy)(3) (2+) was added into the separation buffer solution with precolumn mode. Effects of several important factors were investigated to acquire the optimum conditions. Under the optimum conditions, the heated electrode has been shown to provide advantages by the measurement of ECL intensity in CE at elevated Te. Compared with the conventional electrode at the room temperature, using heated CPE could improve peak shape and gain good reproducibility with lower detection limits and wider linearity ranges. Compared with the room temperature, the linear ranges and detection limits (S/N = 3) for TEA and TPrA were improved about one magnitude when the Te was 39 degrees C. In contrast, the RSD was lower than for the electrode at room temperature.  相似文献   

3.
In this paper, we describe the electrochemiluminescent (ECL) behavior of Ru(bpy)33+-incorporated clay colloids. Experimental results based on the electrochemical-quartz-crystal-microbalance (EQCM) techniques showed that Ru(bpy)33+ could be adsorbed by the clay colloids (montmorillonite K10, denoted K10). The resulting clay particles could emit light (λem 610 nm) when they were fabricated as thin films sandwiched by two conductive ITO electrodes with opposite biases. These Ru(bpy)33+-incorporated clay-modified electrodes could also emit light in aqueous oxalate solutions (pH 10) when potentials more positive than 0.9 V vs. SCE were applied. EDTA was an effective promoter for the Ru(bpy)3 (clay)3+-oxalate ECL reaction. The resulting ECL showed a remarkable sensitivity to oxygen. A glucose optrode was thus fabricated based on the Ru(bpy)33+-incorporated K10 colloids and glucose oxidase (GOx). The ECL signals behaved as a function of [glucose], covering a range from 0.1 to 10 mM at pH 10. The detection limits reached a level of 0.1 mM at this pH.  相似文献   

4.
Due to the high performance of glassy carbon in the aspects of mechanical strength, electrical conductivity and high corrosion resistance, etc., glassy carbon has been widely used in the electrochemistry. A new form of glassy carbon, glassy carbon microsphere, was utilized to couple with ionic liquid in preparing a new electrochemiluminescent platform for Ru(bpy)3Cl2. Room temperature ionic liquid has been proposed to be very interesting and efficient pasting binder to replace the non conductive organic binders for the fabrication of composite paste electrode. Attributed to the special characteristics of glassy carbon microspheres and room temperature ionic liquid [N-octylpyridium tetrafluoroborate (OPFP)], this new electrochemiluminescent sensor exhibited excellent electrochemiluminescent performance in Ru(bpy)32+ solution. We first found that fentanyl citrate could increase the ECL of Ru(bpy)32+, hence an ECL approach was developed for the determination of fentanyl citrate based on this glassy carbon microspheres based electrochemiluminescent platform with high sensitivity. Under the optimized conditions, the enhanced electrochemiluminescent intensity versus fentanyl citrate concentration was linear in the range of 1.0 × 10−8 to 1.0 × 10−4 mol L−1 with a detection limit of 8.5 × 10−9 mol L−1, and the relative standard deviation for 1.0 × 10−6 mol L−1 fentanyl citrate was 1.90% (n = 10). This protocol has extended the application scopes of glassy carbon material and promoted the application of glassy carbon microspheres in electroanalysis.  相似文献   

5.
在十二烷基磺酸钠(SDS)中,考察了盐酸维拉帕米-Ru(bpy)3(2+)体系在金电极上的电化学及其发光行为.结果表明:SDS对体系的电化学反应和电化学发光强度具有显著的增敏作用.据此,建立了一种高效、简便的测定盐酸维拉帕米的电化学发光新方法.在最佳实验条件下,盐酸维拉帕米浓度在1.0×10(-4)~1.0×10(-2...  相似文献   

6.
An electrochemiluminescence (ECL) sensor based on Ru(bpy)32+-graphene-Nafion composite film was developed. The graphene sheet was produced by chemical conversion of graphite, and was characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), and Raman spectroscopy. The introduction of conductive graphene into Nafion not only greatly facilitates the electron transfer of Ru(bpy)32+, but also dramatically improves the long-term stability of the sensor by inhibiting the migration of Ru(bpy)32+ into the electrochemically inactive hydrophobic region of Nafion. The ECL sensor gives a good linear range over 1 × 10−7 to 1 × 10−4 M with a detection limit of 50 nM towards the determination of tripropylamine (TPA), comparable to that obtained by Nafion-CNT. The ECL sensor keeps over 80% and 85% activity towards 0.1 mM TPA after being stored in air and in 0.1 M pH 7.5 phosphate buffer solution (PBS) for a month, respectively. The long-term stability of the modified electrode is better than electrodes modified with Nafion, Nafion-silica, Nafion-titania, or sol-gel films containing Ru(bpy)32+. Furthermore, the ECL sensor was successfully applied to the selective and sensitive determination of oxalate in urine samples.  相似文献   

7.
8.
The electrochemistry and electrochemiluminescence (ECL) of novel three-dimensional nanostructured Ru(bpy)32+/Ni(OH)2 microspheres were investigated for the first time. The negatively charged porous Ni(OH)2 microspheres composed of Ni(OH)2 nanowires were specifically designed to interact with Ru(bpy)32+. The large surface area and porous structure of Ni(OH)2 microspheres enhance loading of Ru(bpy)32+ and mass transport of the model analyte, tripropylamine (TPA). Excellent ECL performance of the presented sensor was achieved including good stability and wide linear range from 7.7 × 10−10 to 3.8 × 10−3 M with the detection limit of 2.6 × 10−10 M to TPA.  相似文献   

9.
A flow injection (FI)–electrochemiluminescent (ECL) method has been developed for the determination of gallic acid, based on an inhibition effect on the Ru(bpy)32+/tri-n-propylamine (TPrA) ECL system in pH 8.0 phosphate buffer solution. The method is simple and convenient with a determination limit of 9.0×10–9 mol/L and a dynamic concentration range of 2×10–8–2×10–5 mol/L. The relative standard deviation (RSD) was 1.0% for 1.0×10–6 mol/L gallic acid (n=11). It was successfully applied to the determination of gallic acid in Chinese proprietary medicine—Jianming Yanhou Pian. The inhibition mechanism proposed for the quenching effect of the gallic acid on the Ru(bpy)32+/TPrA ECL system was the interaction of electrogenerated Ru(bpy)32+* and o-benzoquinone derivative at the electrode surface. The ECL emission spectra and UV-visible absorption spectra were applied to confirm the mechanism.  相似文献   

10.
An effective electrochemiluminescence (ECL) sensor based on Nafion/poly(sodium 4-styrene sulfonate) (PSS) composite film-modified ITO electrode was developed. The Nafion/PSS/Ru composite film was characterized by atomic force microscopy, UV-vis absorbance spectroscopy and electrochemical experiments. The Nafion/PSS composite film could effectively immobilize tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) via ion-exchange and electrostatic interaction. The ECL behavior of Ru(bpy)32+ immobilized in Nafion/PSS composite film was investigated using tripropylamine (TPA) as an analyte. The detection limit (S/N = 3) for TPA at the Nafion/PSS/Ru composite-modified electrode was estimated to be 3.0 nM, which is 3 orders of magnitude lower than that obtained at the Nafion/Ru modified electrode. The Nafion/PSS/Ru composite film-modified indium tin oxide (ITO) electrode also exhibited good ECL stability. In addition, this kind of immobilization approach was simple, effective, and timesaving.  相似文献   

11.
《Analytical letters》2012,45(13):2077-2088
Abstract

An electrochemiluminescence (ECL) method for reduced nicotinamide adenine dinucleotide (NADH) was proposed by immobilizing tris(2,2′‐bipyridyl) ruthenium(II) (Ru(bpy)3 2+) in multiwall carbon nanotubes (MWCNTs)/Nafion composite membrane that was formed on glassy carbon electrode surface. The electrochemical and ECL behaviors of the immobilized Ru(bpy)3 2+ were investigated. The cyclic votammogram of the modified electrode in pH 7.0 phosphate buffer solution showed a couple of redox peaks at +1190 and +1060 mV at 100 mV/s. The composite film had a more open structure and a large surface area allowing faster diffusion of Ru(bpy)3 2+. The presence of MWCNTs resulted in the improved ECL sensitivity and longer‐term stability of the modified electrode. The modified electrode showed a linear response to NADH in the concentration range of 1.0×10?6 to 1.6×10?5 M with a detection limit of 8.2×10?7 M.  相似文献   

12.
Tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) has been successfully immobilized onto electrode through the electrodeposition of Ru(bpy)32+/AuNPs/chitosan composite film. In the experiments, chitosan solution was first mixed with Au nanoparticles (AuNPs) and Ru(bpy)32+. Then, during chronopotentiometry experiments in this mixed solution, a porous 3D network structured film containing Ru(bpy)32+, AuNPs and chitosan has been electrodeposited onto cathode due to the deposition of chitosan when pH value is over its pKa (6.3). The applied current density is crucial to the film thickness and the amount of the entrapped Ru(bpy)32+. Additionally, these doping Ru(bpy)32+ in the composite film maintained their intrinsic electrochemical and electrochemiluminescence activities. Consequently, this Ru(bpy)32+/AuNPs/chitosan modified electrode has been used in ECL to detect tripropylamine, and the detection limit was 5 × 10−10 M.  相似文献   

13.
Wen Pan 《Talanta》2007,73(4):651-655
An amperometric sensor for the detection of difenidol, a tertiary amine-containing analyte, was proposed. Ruthenium(II) tris(bipyridine)/multi-walled carbon nanotubes/Nafion composite film was suggested to modify the glassy carbon electrode. The modified electrode was shown to be an excellent amperometric sensor for the detection of difenidol hydrochloride. The linear range is from 1.0 × 10−6 to 3.3 × 10−5 M with a correlation coefficient of 0.998. The limit of detection was 5 × 10−7 M, which was obtained through experimental determination based on a signal-to-noise ratio of three. The sensor was employed to the determination of the active ingredients in the tablets containing difenidol hydrochloride.  相似文献   

14.
An electrochemiluminescence (ECL) inhibition method is developed for quantitative determination of four tetracyclines (TCs) in honey samples, including tetracycline (TC), oxytetracycline (OTC), chlortetracycline (CTC) and doxycycline (DC). It was found that the four TCs strongly inhibited the ECL signal of the Ru(bpy)32+/DBAE system. Based on the ECL signal changes, a simple and ultrasensitive detection method for TCs was thus established. The optimum experimental conditions including the scan mode and scan rate of the applied potential, the type of the buffer solution and its pH, and the concentration of Ru(bpy)32+ and DBAE for the ECL inhibition method, were investigated in detail. Under the optimized conditions, the quenched ECL intensity versus the logarithm of the concentration of TCs is in good linear relationship over a concentration range from 4.0 × 10−11 to 4.0 × 10−9 g mL−1. The detection limits were found to be 2.0 × 10−12 g mL−1. The results obtained by the proposed ECL system, in terms of sensitivity, were much better than those of previously reported methods. In addition, the method was applied successfully to determine the total residuals of the four TCs in honey samples. The relative standard deviations were found in a range of 4.9–14.3%, and the recoveries were obtained from 87.5% to 115.0%. A possible mechanism for the quenching effects of Ru(bpy)32+/DBAE system was also proposed.  相似文献   

15.
Yali Li  Hui Zhu  Xiurong Yang 《Talanta》2009,80(2):870-2045
In order to solidify the electrochemiluminescence (ECL) luminophor tris(2,2′-bipyridyl) ruthenium(II) ([Ru(bpy)3]2+) onto the electrode surfaces robustly, the negative charged heteropolyacids (HPAs) moieties were utilized to attract and bond cations [Ru(bpy)3]2+ via an adsorption method. The compositions and microstructures of the hybrid complexes were characterized by elemental analysis (EDS), spectroscopic techniques (UV-vis, FTIR) and field-emission scanning electron microscopy (FE-SEM). The electrochemical and ECL behaviors of the [Ru(bpy)3]2+/[PW12O40]3− hybrid complex contained in the solid film of the nanocomposites formed on the electrode surfaces were also studied. It was found that the corresponding solid membranes exhibited a diffusion-controlled voltammetric feature and excellent electrochemiluminescence behaviors. Hence potential prospects as new electrochemiluminescent materials for application in electroanalytical detection are envisioned.  相似文献   

16.
Here, we describe a new approach for electrochemiluminescence (ECL) assay with Ru(bpy)32+-encapsulated silica nanoparticle (SiO2@Ru) as labels. A water-in-oil (W/O) microemulsion method was employed for one-pot synthesis of SiO2@Ru nanoparticles. The as-synthesized SiO2@Ru nanoparticles have a narrow size distribution, which allows reproducible loading of Ru(bpy)32+ inside the silica shell and of α-fetoprotein antibody (anti-AFP), a model antibody, on the silica surface with glutaraldehyde as linkage. The silica shell effectively prevents leakage of Ru(bpy)32+ into the aqueous solution due to strong electrostatic interaction between the positively charged Ru(bpy)32+ and the negatively charged surface of silica. The porous structure of silica shell allowed the ion to move easily through the pore to exchange energy/electrons with the entrapped Ru(bpy)32+. The as-synthesized SiO2@Ru can be used as a label for ultrasensitive detection of biomarkers through a sandwiched immunoassay process. The calibration range of AFP concentration was 0.05-30 ng mL−1 with linear relation from 0.05 to 20 ng mL−1 and a detection limit of 0.035 ng mL−1 at 3σ. The resulting immunosensors possess high sensitivity and good analytical performance.  相似文献   

17.
Lei Qian  Xiurong Yang 《Talanta》2007,73(1):189-193
In this paper, we demonstrate an electrochemiluminescence (ECL) enhancement of tris(2,2-bipyridyl)ruthenium(II) (Ru(bpy)32+) by the addition of silver(I) ions. The maximum enhancement factor of about 5 was obtained on a glassy carbon electrode in the absence of co-reactant. The enhancement of ECL intensity was possibly attributed to the unique catalytic activity of Ag+ for reactions between Ru(bpy)33+ with OH. The higher enhancement was observed in phosphate buffer solutions compared with that from borate buffer solutions. This resulted from the fact that formation of nanoparticles with large surface area in the phosphate buffer solution exhibited high catalytic activity. The amount of Ag+, solution pH and working electrode materials played important roles for the ECL enhancement. We also studied the effects of Ag+ on Ru(bpy)32+/tripropylamine and Ru(bpy)32+/C2O42− ECL systems.  相似文献   

18.
Qiu B  Xue L  Wu Y  Lin Z  Guo L  Chen G 《Talanta》2011,85(1):339-344
Inhibited Ru(bpy)32+ electrochemiluminescence by inorganic oxidants is investigated. Results showed that a number of inorganic oxidants can quench the ECL of Ru(bpy)32+/tri-n-propylamine (TPrA) system, and the logarithm of the decrease in ECL intensity (ΔI) was proportional to the logarithm of analyte concentrations. Based on which, a sensitive approach for detection of these inorganic oxidants was established, e.g. the log-log plots of ΔI versus the concentration of MnO4, Cr2O72− and Fe(CN)63− are linear in the range of 1 × 10−7 to 3 × 10−4 M for MnO4 and Cr2O72−, and 1 × 10−7 to 1 × 10−4 M for Fe(CN)63−, with the limit of detection (LOD) of 8.0 × 10−8 M, 2 × 10−8 M, and 1 × 10−8 M, respectively. A series of experiments such as a comparison of the inhibitory effect of different compounds on Ru(bpy)32+/TPrA ECL, ECL emission spectra, UV-Vis absorption spectra etc. were investigated in order to discover how these inorganic analytes quench the ECL of Ru(bpy)32+/TPrA system. A mechanism based on consumption of TPrA intermediate (TPrA·) by inorganic oxidants was proposed.  相似文献   

19.
In this work, a stable electrogenerated chemiluminescence (ECL) detector was developed. The detector was prepared by packing cation-exchanged resin particles in a glass tube, followed by inserting Pt wires (working electrode) in this tube and sealing. The leakage of Ru(bpy)32+ can be compensated by adding a small amount of Ru(bpy)32+ into solution phase. Coupled with high-performance liquid chromatography separation, the detector has been used for determination of itopride hydrochloride in human serum. Under the optimal conditions, the ECL intensity has a linear relationship with the concentration of itopride hydrochloride in the range of 1.0 × 10−8 g mL−1 to 1.0 × 10−6 g mL−1 and the detection limit was 3 × 10−9 g mL−1 (S/N = 3). The as-prepared ECL detector displayed good sensitivity and stability.  相似文献   

20.
A sensitive voltammetric method has been developed for the determination of total or single species of sulfur anions containing sulfide, sulfite and thiosulfate. The method is based on the catalytic effect of tris(2,2'-bipyridyl)Ruthenium(II) (Ru(bpy)2+ 2) as a homogeneous mediator on the oxidation of those anions at the surface of a glassy carbon electrode. A reversible redox couple of Ru(II)/Ru(III) were observed as a solute in aqueous solution. Cyclic voltammetry study showed that the catalytic current of the system depends on the concentration of the anions. Optimum pH values for voltammetric determination of sulfite, thiosulfate and sulfide has been found to be 5.6, 10.0 and 10.0, respectively. Under the optimized conditions the calibration curves have been obtained linear in the concentration ranges of 0.8–500.0, 0.4–1000.0 and 0.5–5000.0 µmol L− 1 of SO32−, S2O32− and S2−, respectively. The detection limits have been calculated to be 0.40, 0.17 and 0.33 µmol L− 1 for SO32−, S2O32− and S2−, respectively. The diffusion coefficients of sulfite and thiosulfate have been estimated using chronoamperometry. The chronoamperometric method also has been used to determine the catalytic rate constant for catalytic reaction of the Ru(bpy)2+ 2 with sulfite and thiosulfate. Finally the proposed method has been used for the determination of total sulfur contents in real samples of water and wastewater. Moreover the sulfite content in sugar and sulfur dioxide in air has been determined with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号