首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extraction and characterization of adenovirus   总被引:5,自引:0,他引:5  
A new methodology for the extraction and characterization of proteins from Coomassie-stained sodium dodecylsulfate polyacrylamide gel electrophoresis using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been described. The utility of this methodology was demonstrated in the characterization of adenovirus proteins. The key steps in the extraction and destaining process involve washing the excised band with a combination of solvents that include 10% acetic acid, acetonitrile, methanol, and formic acid:water:isopropanol mixture. By using this procedure, we determined adenovirus proteins with molecular weights ranging from 10,000 to 110,000 Da by MALDI-MS, obtaining a detection limit of approximately 6 pmol. Parallel experiments were successfully carried out to analyze adenovirus proteins from Cu-stained gels. It was observed that increase in laser intensity resulted in significant improvements in the quality of MALDI mass spectra for the analysis of inefficiently destained proteins from Cu-stained gels.  相似文献   

2.
Plasma protein profiling with mass spectrometry is currently being evaluated as a diagnostic tool for cancer and other diseases. These experiments consist of three steps: plasma protein fractionation, analysis with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS), and comparisons of the MALDI profiles to develop diagnostic fingerprints using bioinformatic techniques. While preliminary results appear promising in small sample groups, the method is limited by the sensitivity of MALDI-MS for intact proteins, the limited mass range of MALDI-MS, and difficulties associated with isolating individual proteins for identification to validate the diagnostic fingerprint. Here we present an alternative and improved method directed toward diagnostic protein discovery, which incorporates proteolytic peptide profiling, bioinformatic targeting of ion signals, and MALDI tandem mass spectrometry (MS/MS) peptide sequencing, rather than fingerprinting. Pancreatic cancer patients, pancreatitis patients, and controls are used as the model system. Profiling peptides after enzymatic digestion improves sensitivity and extends the accessible protein molecular weight range when compared to intact protein profiling. The first step is to extract and fractionate the proteins from plasma. Each fraction is digested with trypsin and subsequently analyzed by MALDI-MS. Rather than using bioinformatic analysis as a pattern-matching technique, peptides are targeted based on the disease to control peak intensity ratios measured in the averages of all mass spectra in each group and t-tests of the intensity of each individual peak. The targeted peptide ion signals are subsequently identified using MALDI-MS/MS in quadrupole-TOF and tandem-TOF instruments. This study found not only the proteins targeted and identified by a previous protein profiling experiment, but also detected additional proteins. These initial results are consistent with the known biology of pancreatic cancer or pancreatitis, but are not specific to those diseases.  相似文献   

3.
Serum profiling by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) holds promise as a clinical tool for early diagnosis of cancer and other human diseases. Sample preparation is key to achieving reproducible and well-resolved signals in MALDI-MS; a prerequisite for translation of MALDI-MS based diagnostic methods to clinical applications. We have investigated a number of MALDI matrices and several miniaturized solid-phase extraction (SPE) methods for serum protein concentration and desalting with the aim of generating reproducible, high-quality protein profiles by MALDI-MS. We developed a simple protocol for serum profiling that combines a matrix mixture of 2,5-dihydroxybenzoic acid and alpha-cyano-4-hydroxycinnamic acid with miniaturized SPE and MALDI-MS. Functionalized membrane discs with hydrophobic, ion-exchange or chelating properties allowed reproducible MALDI mass spectra (m/z 1000-12,000) to be obtained from serum. In a proof-of-principle application, SPE with chelating material and MALDI-MS identified protein peaks in serum that had been previously reported for distinguishing a person diagnosed with breast cancer from a control. These preliminary results indicate that this simple SPE/MALDI-MS method for serum profiling provides a versatile and scalable platform for clinical proteomics.  相似文献   

4.
The development of powerful analytical techniques for specific molecular characterization of neural cell types is of central relevance in neuroscience research for elucidating cellular functions in the central nervous system (CNS). This study examines the use of differential protein expression profiling of mammalian neural cells using direct analysis by means of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). MALDI-MS analysis is rapid, sensitive, robust, and specific for large biomolecules in complex matrices. Here, we describe a newly developed and straightforward methodology for direct characterization of rodent CNS glial cells using MALDI-MS-based intact cell mass spectrometry (ICMS). This molecular phenotyping approach enables monitoring of cell growth stages, (stem) cell differentiation, as well as probing cellular responses towards different stimulations. Glial cells were separated into pure astroglial, microglial, and oligodendroglial cell cultures. The intact cell suspensions were then analyzed directly by MALDI-TOF-MS, resulting in characteristic mass spectra profiles that discriminated glial cell types using principal component analysis. Complementary proteomic experiments revealed the identity of these signature proteins that were predominantly expressed in the different glial cell types, including histone H4 for oligodendrocytes and S100-A10 for astrocytes. MALDI imaging MS was performed, and signature masses were employed as molecular tracers for prediction of oligodendroglial and astroglial localization in brain tissue. The different cell type specific protein distributions in tissue were validated using immunohistochemistry. ICMS of intact neuroglia is a simple and straightforward approach for characterization and discrimination of different cell types with molecular specificity.  相似文献   

5.
Direct mass spectrometric analysis of complex biological samples is becoming an increasingly useful technique in the field of proteomics. Matrix-assisted laser desorption/ionization mass spectroscopy (MALDI-MS) is a rapid and sensitive analytical tool well suited for obtaining molecular weights of peptides and proteins from complex samples. Here, a fast and simple approach to cellular protein profiling is described in which mammalian cells are lysed directly in the MALDI matrix 2,5-dihydroxybenzoic acid (DHB) and mass analyzed using MALDI-time of flight (TOF). Using the unique MALDI mass spectral "fingerprint" generated in these analyses, it is possible to differentiate among several different mammalian cell lines. A number of techniques, including MALDI-post source decay (PSD), MALDI tandem time-of-flight (TOF-TOF), MALDI-Fourier transform ion cyclotron resonance (FTICR), and nanoflow liquid chromatography followed by electrospray ionization and tandem mass spectrometry (LC-ESI-MS/MS) were employed to attempt to identify the proteins represented in the MALDI spectra. Performing a tryptic digestion of the supernatant of the cells lysed in DHB with subsequent LC-ESI-MS/MS analysis was by far the most successful method to identify proteins.  相似文献   

6.
Direct analysis of proteins adsorbed onto the surface of nylon membranes has been performed at the picomole level by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). Nylon-66 and positive charge-modified nylon (Zetabind) membranes fixed to MALDI probe tips were successfully employed to analyze picomole quantities of sample that were adsorbed onto these inert supports prior to adding a matrix-containing solution. Proteins and peptides are readily solubilized from these types of membrane with conventional matrix solvents and cocrystallize with the matrix on the membrane surface. Because solubilization of membrane-adsorbed protein is necessary for successful sample preparation, nylon membranes are more suitable for use with MALDI-MS than other protein transfer membranes such as polyvinylidene difluoride or nitrocellulose. When compared to samples prepared conventionally, no apparent loss of sensitivity or resolution is observed when analysis by MALDI-MS is performed from nylon-66 or positive charge-modified nylon membranes. Detection limits and resolution are not apparently affected by the membrane immobilization/washing procedure, and no change in the mass accuracy is observed when analysis is performed on the nylon surface. However, there is a time shift (increase) in ion flight time when analysis by MALDI-time-of-flight-MS is performed directly from the membrane fixed to the probe tip (about 200 ns for an ion of mass 379.3). To maintain mass accuracy, the use of internal standards or external calibration performed on a membrane support was necessary. The immobilization of proteins on nylon membranes can be used to facilitate removal of water-soluble contaminants because the sample is retained when the membrane is immersed in water prior to adding the matrix solution. The feasibility of performing both chemical and enzymatic modifications of proteins adsorbed onto inert nylon supports prior to analysis by MALDi-MS is also demonstrated.  相似文献   

7.
Applications of mass spectrometry to food proteins and peptides   总被引:3,自引:0,他引:3  
The application of mass spectrometry (MS) to large biomolecules has been revolutionized in the past decade with the development of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) techniques. ESI and MALDI permit solvent evaporation and sublimation of large biomolecules into the gaseous phase, respectively. The coupling of ESI or MALDI to an appropriate mass spectrometer has allowed the determination of accurate molecular mass and the detection of chemical modification at high sensitivity (picomole to femtomole). The interface of mass spectrometry hardware with computers and new extended mass spectrometric methods has resulted in the use of MS for protein sequencing, post-translational modifications, protein conformations (native, denatured, folding intermediates), protein folding/unfolding, and protein-protein or protein-ligand interactions. In this review, applications of MS, particularly ESI-MS and MALDI time-of-flight MS, to food proteins and peptides are described.  相似文献   

8.
A simple, rapid, straightforward and washing/separation free of in-solution digestion method for microwave-assisted tryptic digestion of proteins (cytochrome c, lysozyme and myoglobin) using bare TiO(2) nanoparticles (NPs) prepared in aqueous solution to serve as multifunctional nanoprobes in electrospray ionization mass spectrometry (ESI-MS) was demonstrated. The current approach is termed as 'on particle ionization/enrichment (OPIE)' and it can be applied in ESI-MS, atmospheric pressure-matrix-assisted laser desorption/ionization mass spectrometry (AP-MALDI-MS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The bare TiO(2) NPs can assist, accelerate and effectively enhance the digestion efficiency, sequence coverage and detection sensitivity of peptides for the microwave-assisted tryptic digestion of proteins in ESI-MS. The reason is attributed to the fact that proteins or partially digested proteins are easily attracted or concentrated onto the surface of TiO(2) NPs, resulting in higher efficiency of digestion reactions in the microwave experiments. Besides, the TiO(2) NPs could act as a microwave absorber to accelerate and enrich the protein fragments in a short period of time (40-60 s) from the microwave experiments in ESI-MS. Furthermore, the bare TiO(2) NPs prepared in aqueous solution exhibit high adsorption capability toward the protein fragments (peptides); thus, the OPIE approach for detecting the digested protein fragments via ESI and MALDI ionization could be achieved. The current technique is also a washing and separation-free technique for accelerating and enriching microwave-assisted tryptic digestion of proteins in the ESI-MS and MALDI-MS. It exhibits potential to be widely applied to biotechnology and proteome research in the near future.  相似文献   

9.
A peptide targeting method has been developed for diagnostic protein discovery, which combines proteolytic digestion of fractionated plasma proteins and liquid chromatography coupled to electrospray time-of-flight mass spectrometry (LC/ESI-TOFMS) profiling. Proteolysis prior to profiling overcomes molecular weight limitations and compensates for the poor sensitivity of matrix-assisted laser desorption/ionization (MALDI) protein profiling. LC/MS increases the peak capacity compared to crude fractionation techniques or single sample MALDI analysis. Differentially expressed peptides are targeted in the mass chromatograms using bioinformatic techniques and subsequently sequenced with MALDI tandem MS. In a model study comparing pancreatic cancer patients to controls, 74% of the peptide targets were successfully sequenced. This profiling method was superior to previous experiments using single sample MALDI analysis for protein profiling or proteolytic peptide profiling, because more potential protein markers were identified.  相似文献   

10.
A rapid method for analysis of glycans of glycoproteins is presented. This method comprised deglycosylation, sample cleanup and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis of glycans. The enzymatic deglycosylation of N-linked glycoproteins was enhanced in terms of speed and reproducibility using an enzyme-friendly surfactant. The released glycans were desalted using a micro-scale solid phase extraction (SPE) device packed with a hydrophilic interaction chromatography (HILIC) sorbent. Hydrophilic glycans were well retained by SPE, while salts and surfactants were removed from the sample. The glycans were eluted using 25-50 microL of solvent and analyzed directly without derivatization using MALDI-MS. MALDI quadrupole time-of-flight (Q-Tof) instrumentation was utilized for glycan profiling and structure characterization by tandem mass spectrometry (MS/MS). The presented method allows sensitive analysis of glycans benefiting from optimized deglycosylation reactions and efficient sample cleanup.  相似文献   

11.
For rapid identification of bacteria by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), a bioinformatics approach using ribosomal subunit proteins as biomarkers has been proposed. This method compares the observed masses for biomarkers with calculated masses as predicted from the amino acid sequences registered on protein databases. To evaluate this approach, the expressed ribosomal proteins of a genome-sequenced bacterium, Lactobacillus plantarum NCIMB 8826, were characterized as a model sample. The protein expression of 42 ribosomal subunit proteins, together with 10 ribosome-associated proteins in the isolated ribosome fraction, was confirmed through two-dimensional gel electrophoresis combined with peptide mass fingerprinting. The observed masses of the proteins in the isolated ribosome fraction were then determined by MALDI-MS. We preliminarily selected 44 biomarkers whose observed masses were matched with the calculated masses predicted from the amino acid sequence registered in the protein databases by considering N-terminal methionine loss only. Of these, the finally selected reliable biomarkers were 34 proteins including 31 ribosomal subunit proteins and 3 ribosome-associated proteins that could be observed in the MALDI mass spectra of the cell lysate sample. These biomarkers were usable in MALDI-MS characterization of two industrial L. plantarum cultures.  相似文献   

12.
The analysis of cellular lipids and phospholipids has been of continuously increasing research interest due to the importance of these molecules in psychological process. In this work, a mass spectrometry-based method for direct, in situ analysis of lipids in cells was reported. Mammalian cells were directly cultured on ITO-coated glass and then analyzed by matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS). The matrix application process was achieved by electrospray coating, which produced a homogenous layer of matrix crystal on the sample. The detection results and reproducibility are satisfactory. With this method, a profile of abundant membrane lipids is generated, which is characteristic of cell type. In conclusion, this in situ MALDI-MS cellular lipid analysis method provides a platform for sensitive and robust molecular profiling of mammalian cells.  相似文献   

13.
MALDI imaging and profiling mass spectrometry of proteins typically leads to the detection of a large number of peptides and small proteins but is much less successful for larger proteins: most ion signals correspond to proteins of m/z < 25,000. This is a severe limitation as many proteins, including cytokines, growth factors, enzymes, and receptors have molecular weights exceeding 25 kDa. The detector technology typically used for protein imaging, a microchannel plate, is not well suited to the detection of high m/z ions and is prone to detector saturation when analyzing complex mixtures. Here we report increased sensitivity for higher mass proteins by using the CovalX high mass HM1 detector (Zurich, Switzerland), which has been specifically designed for the detection of high mass ions and which is much less prone to detector saturation. The results demonstrate that a range of different sample preparation strategies enable higher mass proteins to be analyzed if the detector technology maintains high detection efficiency throughout the mass range. The detector enables proteins up to 70 kDa to be imaged, and proteins up to 110 kDa to be detected, directly from tissue, and indicates new directions by which the mass range amenable to MALDI imaging MS and MALDI profiling MS may be extended.  相似文献   

14.
The characterization of glycosylation in proteins by mass spectrometry (MS) is often impeded by strong suppression of ionization of glycopeptides in the presence of non-glycosylated peptides. Glycopeptides with a large carbohydrate part and a short peptide backbone are particularly affected by this problem. To meet the goal of generating mass spectra exhibiting glycopeptide coverages as complete as possible, derivatization of glycopeptides offers a practical way to increase their ionization yield. This paper investigated derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) which is a rapid labeling technique commonly used for fluorescence detection in high-performance liquid chromatography (HPLC) and capillary electrophoresis (CE). As test samples we used peptides and glycopeptides obtained by enzymatic digestion of three different glycoproteins, i.e., human antithrombin, chicken ovalbumin, and bovine alpha1-acid-glycoprotein. It was found that AQC derivatization resulted in strongly increased signal intensities when analyzing small peptides and glycopeptides by matrix-assisted laser desorption/ionization (MALDI)-MS. For these compounds the limit of detection could be reduced to low fmol amounts. Without derivatization only glycopeptides containing large peptide backbones were detected by MALDI-MS. This effect was even significant when glycopeptides were pre-separated and enriched by means of lectin affinity chromatography before MALDI-MS analysis and when using electrospray ionization (ESI). This labeling method, applied in combination with MS detection for the first time, was found to be well suited for the enhancement of detection sensitivity for small glycopeptides in MALDI-MS analysis and thus for reducing the need for pre-separation steps.  相似文献   

15.
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is a rapid and sensitive analytical method that is well suited for determining molecular weights of peptides and proteins from complex samples. MALDI-MS can be used to profile the peptides and proteins from single-cell and small tissue samples without the need for extensive sample preparation. Furthermore, the recently developed MALDI imaging technique enables mapping of the spatial distribution of signaling molecules in tissue samples. Several examples of signaling molecule analysis at the single-cell and single-organ levels using MALDI-MS technology are highlighted followed by an outlook of future directions.  相似文献   

16.
So far, there have been only a few matrices reported for detection of polysaccharides with molecular weight higher than 3000 Daltons by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). In this work, we found that 2',4',6'-trihydroxyacetophenone (THAP) is a good matrix for MALDI time-of-flight MS analysis of polysaccharides with broad mass range. Large polysaccharides, dextrans, glycoproteins and polysialic acids have been successfully detected by MALDI-MS with THAP as matrix.  相似文献   

17.
Many biological samples destined for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) contain buffers. The presence of these buffers often inhibits the ability to obtain spectra. Here, the results of a study of the effects of six different buffers on spectra of three representative small proteins are reported utilizing 2,5-dihydroxybenzoic acid as matrix. These proteins, bovine insulin, cytochrome c, and bovine albumin have masses from ~5000 to 66,000 Da. Three different sample preparation techniques were investigated: aerospray, dried-drop, and acetone redeposition. Both MALDI Fourier transform and time-of-flight mass spectrometry results show that buffer tolerance of MALDI-MS samples depends upon several factors, including the relative amount of the buffer in the MALDI matrix, as well as the identity of the specific buffer. Furthermore, the rate at which buffer tolerance decreases as buffer concentration is increased varies from buffer to buffer. The current results reveal that, at very high matrix:analyte ratios, buffer tolerance of MALDI is dramatically greater than concluded in previous literature reports.  相似文献   

18.
While surfactants are commonly used in preparing protein samples, their presence in a protein sample can potentially affect the enzymatic digestion process and the subsequent analysis of the resulting peptides by mass spectrometry. The extent of the tolerance of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) to surfactant interference in peptide analysis is very much dependent on the matrix/sample preparation method. In this work the effects of four commonly used surfactants, namely n-octyl glucoside (OG), Triton X-100 (TX-100), 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) and sodium dodecyl sulfate (SDS), for biological sample preparation on trypsin digestion and MALDI-MS of the resulting digest are examined in detail within the context of using a two-layer method for MALDI matrix/sample preparation. Non-ionic and mild surfactants, such as OG, TX-100 or CHAPS, are found to have no significant effect on trypsin digestion with surfactant concentrations up to 1%. However, TX-100 and CHAPS interfere with the subsequent peptide analysis by MALDI-MS and should be removed prior to peptide analysis. OG is an MS-friendly surfactant and no effect is observed for MALDI peptide analysis. The effect of SDS on trypsin digestion in terms of the number of peptides generated and the overall protein sequence coverage by these peptides is found to be protein dependent. The use of SDS to solubilize hydrophobic membrane proteins, followed by trypsin digestion in the presence of 0.1% SDS, results in a peptide mixture that can be analyzed directly by MALDI-MS. These peptides are shown to provide better sequence coverage compared with those obtained without the use of SDS in the case of bacteriorhodopsin, a very hydrophobic transmembrane protein. This work illustrates that MALDI-MS with the two-layer sample preparation method can be used for direct analysis of protein digests with no or minimum sample cleanup after proteins are digested in a solution containing surfactants.  相似文献   

19.
A method of combining capillary electrophoresis (CE) using a surfactant-modified capillary with matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) is described for protein analysis. The CE-MALDI-MS coupling is based on CE fraction collection of nanoliter volume samples in less than 5 microl of dilute acid. This offline coupling does not require any special instrumentation and can be readily performed with commercial instruments. Protein adsorption during CE separation is prevented by coating the capillary with the surfactant didodecyldimethylammonium bromide. This surfactant binds strongly with the capillary wall, hence it does not desorb significantly to interfere with subsequent MALDI-MS analysis. It is shown that the use of a dilute acid for CE fraction collection is advantageous in lowering the detection limit of MALDI-MS compared to using an electrophoretic buffer. The detection limit for proteins such as cytochrome c is 23 fmol injected for CE, or 1.2 fmol spotted for MALDI-MS. This sensitivity is comparable to alternative CE-MALDI-MS coupling techniques using direct CE sample deposition on the MALDI target. In addition, the fraction collection approach has the advantage of allowing multiple reactions to be carried out on the fractioned sample. These reactions are very important in protein identification and structure analysis.  相似文献   

20.
An integrated analytical strategy for enrichment, detection and sequencing of phosphorylated peptides by matrix-assisted laser desorption/ionization (MALDI) tandem mass spectrometry (MS/MS) is reported. o-Phosphoric acid was found to enhance phosphopeptide ion signals in MALDI-MS when used as the acid dopant in 2,5-dihydroxybenzoic acid (2,5-DHB) matrix. The effect was largest for multiply phosphorylated peptides, which exhibited an up to ten-fold increase in ion intensity as compared with standard sample preparation methods. The enhanced phosphopeptide response was observed during MALDI-MS analysis of several peptide mixtures derived by proteolytic digestion of phosphoproteins. Furthermore, the mixture of 2,5-DHB and o-phosphoric acid was an excellent eluant for immobilized metal affinity chromatography (IMAC). Singly and multiply phosphorylated peptide species were efficiently recovered from Fe(III)-IMAC columns, reducing sample handling for phosphopeptide mapping by MALDI-MS and subsequent phosphopeptide sequencing by MALDI-MS/MS. The enhanced response of phosphopeptide ions in MALDI facilitates MS/MS of large (>3 kDa) multiply phosphorylated peptide species and reduces the amount of analyte needed for complete characterization of phosphoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号