首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We describe a terbium-ligand complex (TbL) for a microtiterplate assay for phosphate (P) in the 0.3-100 μmol L−1 range based on luminescence quenching. As the pH optimum is at neutral pH (7.4) the probe is quenched by both, primary (H2PO4) and secondary phosphate (HPO42−). The LOD is 110 nmol L−1. A Stern-Volmer study revealed that quenching is mostly static. Due to the ms-decay time of TbL, the first luminescence lifetime assay for phosphate could also be developed. The lifetime-based calibration plot is linear between 0.5 and 5 μmol L−1 of P. The effect of various surfactants on assay performance and a study on interferents are presented. The probe was successfully applied to determination of P in commercial plant fertilizers and validated against the molybdenum blue test. The probe is the most sensitive lanthanide-based probe for phosphate.  相似文献   

2.
L-selectin is a protein with potential importance for numerous diseases and clinical disorders. In this paper, we present a new aptamer-based luminescent assay developed to detect L-selectin. The sensing system working principle is based on Förster Resonance Energy Transfer (FRET) from a donor terbium complex (TbC) to an acceptor cyanine dye (Cy5). In the present approach, the biotinylated aptamer is combined with Cy5-labelled streptavidin (Cy5-Strep) to yield an aptamer-based acceptor construct (Apta-Cy5-Strep), while L-selectin is conjugated using luminescent TbC. Upon aptamer binding to the TbC-labelled L-selectin (L-selectin-TbC), permanent donor-acceptor proximity is established which allows for radiationless energy transfer to occur. However, when unlabelled L-selectin is added, it competes with the L-selectin-TbC and the FRET signal decreases as the L-selectin concentration increases. FRET from the TbC to Cy5 was observed with time-gated time-resolved luminescence spectroscopy. A significant change in the corrected luminescence signal was observed in the dynamic range of 10–500 ng/mL L-selectin, the concentration range relevant for accelerated cognitive decline of Alzheimer's disease, with a limit of detection (LOD) equal to 10 ng/mL. The aptasensor-based assay is homogeneous and can be realized within one hour. Therefore, this method has the potential to become an alternative to tedious heterogeneous analytical methods, e.g. based on enzyme-linked immunosorbent assay (ELISA).  相似文献   

3.
Here, we present a fast and simple hydrogen peroxide assay that is based on time-resolved fluorescence. The emission intensity of a complex consisting of terbium ions (Tb3+) and phthalic acid (PA) in HEPES buffer is quenched in the presence of H2O2 and this quenching is concentration-dependent. The novel PATb assay detects hydrogen peroxide at a pH range from 7.5 to 8.5 and with a detection limit of 150 nmol L−1 at pH 8.5. The total assay time is less than 1 min. The linear range of the assay can be adapted by a pH adjustment of the aqueous buffer and covers a concentration range from 310 nmol L−1 to 2.56 mmol L−1 in total which encompasses four orders of magnitude. The assay is compatible with high concentrations of all 47 tested inorganic and organic compounds. The PATb assay was applied to quantify H2O2 in polluted river water samples. In conclusion, this fast and easy-to-use assay detects H2O2 with high sensitivity and precision.  相似文献   

4.
Guanine nucleotide binding proteins, such as Ras proteins, play a pivotal role in maintaining the regular life cycle of cells. The involvement of Ras mutants in the progress of cancer has attracted many efforts to find detection methods for Ras activity. In this study we present a luminescent microwell plate assay for monitoring GTPase activity of Ras proteins. The luminescence intensity of the Tb–norfloxacin complex is influenced by nucleoside phosphates as well as by inorganic phosphates. Real-time kinetics of the GTPase activity of wild-type Ras and Ras mutants can be monitored online. The effect of a GTPase activating protein as well as of a downstream effector (Ras-binding domain of human Raf-1) on the GTPase activity of different Ras mutants is examined. In contrast to other methods, this assay does not require the use of radioactively labeled substrates or chromatographic separation steps. Moreover, the application of fluorescently labeled GTP substrates which often interfere with enzymatic activity can be avoided. This in vitro assay can serve as a model system for the screening of regulators affecting the GTPase activity of Ras proteins. Figure The emission of the lanthanide complex Tb(III)-norfloxacin is influenced by nucleoside phosphates as well as by inorganic phosphates. Ras proteins display a specific GTPase activity which converts protein-bound GTP to GDP and phosphate, the latter being released. The Ras activity can be monitored by a significant decrease in luminescence intensity of Tb(III)-norfloxacin owing to the strong quenching effect induced by the enzymatically hydrolyzed phosphate anions. This luminescent assay enables the monitoring of real-time kinetics of the GTPase activity of Ras proteins and Ras mutants and a fast screening of their regulators.  相似文献   

5.
《印度化学会志》2021,98(2):100029
Alkaline phosphatase (ALP) is an important biomarker in clinical diagnostics, and the abnormal level of ALP enzyme in serum is closely related to various diseases such as bone metastases, bone or liver cancer, and extrahepatic biliary obstruction. Recognizing the location and expression level of ALP in live cells has a substantial importance in early-stage cancer diagnosis, as well as an important parameter for studying the recovery of the patients after liver transplantation. With the advent of the newer and advanced fluorescence imaging techniques, small-molecule fluorescent probes have become a very powerful tool for mapping the subtle changes in the enzyme expression level in living cells and tissues in real-time. In this account, we provide an overview of recent advances in small-molecule ALP fluorescent probes, mainly during the last few years, including the design strategies and applications for biological applications.  相似文献   

6.
Colloidal semiconductor nanocrystals have attracted considerable attention as a novel biological luminescent label. The bioinorganic conjugates of luminescent CdTe nanocrystals and protein, including CdTe/BSA (bovine serum albumin) and CdTe/MAB (mouse monoclonal antibody against hepatities B surface antigen), were formed via electrostatic/coordination self-assembly. Pure CdTe nanocrystals, CdTe/BSA and CdTe/MAB were used in the immunochromatographic assay experiments, respectively. And the results indicated that CdTe nanocrystals could be used and developed as a novel label with good stability, high sensitivity and facile determination of several analytes in immunochromatographic assay strips.  相似文献   

7.
The present work was aimed to the development of a fluorescence assay using the universal 96-well microplate format, for the measurement of reduced glutathione (GSH) in yeast cells. The method relies upon the reaction between GSH and a highly selective fluorogenic probe, i.e. naphthalene-2,3-dicarboxaldehyde (NDA). The optimization of the method included the extraction step of GSH from cultured yeast cells in a cold perchloric acid solution, derivatization conditions (10-min reaction at pH 8.6 and at 20 ± 2 °C in darkness) and stability studies of the resulting fluorescent adduct. Full selectivity was observed versus other endogenous thiols (except for γ-glutamylcysteine), glutathione disulfide (GSSG) and enzymatic reducing reagents of GSSG. Linearity was verified in the range 0.3-6.5 μM (R2 > 0.98) and limits of quantification and detection were 0.3 and 0.05 μM, respectively. Relative standard deviation corresponding to repeatability (n = 3) and inter-day precision (n = 5) were 2.8 and 6.1%, respectively. Mean GSH recovery from cell extracts was 95%. The method appeared highly correlated (R2 = 0.96) with a previously reported HPLC method.The method was then applied to the monitoring of GSH in the yeast strain Kluyveromyces lactis during its growth period and in the presence of an inhibitor of GSH biosynthesis. The method presents the main advantage of a high throughput for the measurement of biological samples. The extent of the method to the study of the redox couple GSSG/GSH by including an enzymatic reduction step and the enhancement of the fluorescence signal using cyclodextrins were discussed.  相似文献   

8.
The use of a novel inexpensive photometric device, a paired emitter-detector diode (PEDD) has been applied to the colorimetric determination of phosphate using the malachite green spectrophotometric method. The novel miniaturized flow detector applied within this manifold is a highly sensitive, low cost, miniaturized light emitting diode (LED) based detector. The optical flow cell was constructed from two LEDs, whereby one is the light source and the second is the light detector, with the LED light source forward biased and the LED detector reversed biased. The photocurrent generated by the LED light source discharges the junction capacitance of the detector diode from 5 V (logic 1) to 1.7 V (logic 0) and the time taken for this process to occur is measured using a simple timer circuit.The malachite green (MG) method employed for phosphate determination is based on the formation of a green molybdophosphoric acid complex, the intensity of which is directly related to phosphate concentration. Optimum analytical parameters such as reaction kinetics, reagent to sample concentration ratio and emitter wavelength intensity were investigated for the spectrophotometric method. Linear calibration plots that obeyed the Beer-Lambert law were obtained for phosphate in the range of 0.02-2 μM. The dynamic range, sensitivity and limits of detection are reported.  相似文献   

9.
We report a simple, cost-effective, and label-free detection method, consisting of a platelet-derived growth factor (PDGF) binding aptamer and hydrophobic Ru(II) complex as a sensor system for PDGF. The binding of PDGF with the aptamer results in the weakening of the aptamer–Ru(II) complex, monitored by luminescence signal. A substantial enhancement in the luminescence intensity of Ru(II) complex is observed in the presence of aptamer due to the hydrophobic interaction. Upon addition of PDGF, the luminescence intensity is decreased, due to the stronger interaction between the aptamer and PDGF resulting in the displacement of Ru(II) complex to the aqueous solution. Our assay can detect a target specifically in a complex medium such as the mixture of proteins, at a concentration of 0.8 pM.
Figure
?  相似文献   

10.
A novel cadmium complex Cd(IPA)2(phen)2 (IPAH?=?isophthanic acid, phen?=?1,10-phenanthroline) was synthesized by hydrothermal methods and characterized structurally by X-ray diffraction. The complex possesses a monomeric molecular structure. Cd(IPA)2(phen)2 is orthorhombic, space group Aba2, with a?=?14.670(7), b?=?22.876(8), c?=?9.473(6)?Å, V?=?3179(3)?Å3, D c?=?1.573?Mg?m?3, Z?=?4, F(000)?=?1520, GOF?=?1.027, R1?=?0.0299, wR2?=?0.0617. Photophysical properties (fluorescence excitation and emission spectra) are reported.  相似文献   

11.
Upon the study of small-molecules binding to proteins, the traditional methods for calculating dissociation constants (Kd and Ki) have shortcomings in dealing with the single binding site models. In this paper, two equations have been derived to solve this problem. These two equations are independent of the total concentration or initial degree of saturation of receptor and the activity of the competitive molecule. Through nonlinear fitting against these two equations, Kd value of a probe can be obtained by binding assay, and Ki value of a ligand can be obtained by competitive assay. Moreover, only the total concentrations of receptor([R]t), ligand([L]t) and probe([P]t) are required for the data fitting. In this work, Ki values of some typical ligands of PPARγ were successfully determined by use of our equations, among which the Ki value of PPARγ-LY171883 was reported for the first time.  相似文献   

12.
The development of high-performance X-ray detectors requires scintillators with fast decay time, high light yield, stability, and X-ray absorption capacity, which are difficult to achieve in a single material. Here, we present the first example of a lanthanide chalcogenide of LaCsSiS4 : 1 % Ce3+ that simultaneously integrates multiple desirable properties for an ideal scintillator. LaCsSiS4 : 1 % Ce3+ demonstrates a remarkably low detection limit of 43.13 nGyair s−1 and a high photoluminescence quantum yield of 98.24 %, resulting in a high light yield of 50480±1441 photons/MeV. Notably, LaCsSiS4 : 1 % Ce3+ exhibits a fast decay time of only 29.35±0.16 ns, making it one of the fastest scintillators among all lanthanide-based inorganic scintillators. Furthermore, this material shows robust radiation and moisture resistance, endowing it with suitability for chemical processing under solution conditions. To demonstrate the X-ray imaging capacity of LaCsSiS4 : 1 % Ce3+, we fabricated a flexible X-ray detector that achieved a high spatial resolution of 8.2 lp mm−1. This work highlights the potential of lanthanide chalcogenide as a promising candidate for high-performance scintillators.  相似文献   

13.
Coumestrol is a well-known ligand for the estrogen receptor (ER). The compound itself is fluorescent, and its fluorescence intensity at 408?nm increases upon binding to the ER. Here we describe a novel binding assay in 96-well plate format for estrogenic compounds, based on the competition between fluorescent coumestrol and estrogenic compounds for binding to the ligand binding domain (LBD) of the ER-alpha. Displacement of coumestrol was measured as a decrease in fluorescence intensity using a Victor2 1420 multilabel reader. Competitive binding curves for the well-known estrogenic compounds, 17β-estradiol (E2), ethinylestradiol, 4-nonylphenol, 4-octylphenol, genistein, bisphenol A, tamoxifen and diethylstilbestrol were constructed by using 7–10 different concentrations of the compounds and a fixed concentration of ER-α-LBD (14?nmol) and coumestrol (100?nmol). IC50 values and relative potencies (compared to E2) of the estrogenic compounds were determined. The assay was validated by comparing the relative potencies to those from standard radioligand binding assays in the literature. Within day and between day variations were determined and the performance of the assay was assessed by determining the coefficients of variation and Z′ values. The present fluorescent binding assay has proven to be fast and easy, and allows accurately quantifying the binding affinity of estrogenic ligands. The method is also suitable as a high-throughput screening assay for ER ligands.  相似文献   

14.
New sensing films have been developed for the detection of molecular oxygen. These films are based on luminescent Ir(III) dyes incorporated either into polystyrene (with and without plasticizer) or metal oxide, nanostructured material. The preparation and characterization of each film have been investigated in detail. Due to their high sensitivity for low oxygen concentration, the parameters pO2(S=1/2) and ΔI1% have been also evaluated in order to establish the most sensitive membrane for controlling concentrations between 0 and 10% and low oxygen concentrations (lower than 1%), respectively. The results show that the use of nanostructured material increased the sensitivity of the film; the most sensitive membrane for controlling O2 between 0 and 10% is based on N1001 immobilized in AP200/19 (ksv = 2848 ± 101 bar−1 and pO2(S=1/2)=0.0006), and the complex N969 incorporated into AP200/19 seems to be the most suitable for applications in oxygen trace sensing (ΔI1% = 93.13 ± 0.13%).  相似文献   

15.
Quantum dots (QDs) are preferred as high-resolution biological fluorescent probes because of their inherent optical properties compared with organic dyes. This intrinsic property of QDs has been made use of for sensitive detection of methylparathion (MP) at picogramme levels. The specificity of the assay was attributed to highly specific immunological reactions. Competitive binding between free MP and CdTe QD bioconjugated MP (MP-BSA-CdTe) with immobilized anti-MP IgY antibodies was monitored in a flow-injection system. The fluorescence intensity of MP-BSA-CdTe bioconjugate eluted from the column was found to be directly proportional to the free MP concentration. Hence, it was possible to detect MP in a linear range of 0.1–1 ng mL−1 with a regression coefficient R 2 = 0.9905. In this investigation, IgY proved advantageous over IgG class immunoglobulins in terms of yield, stability, cost effectiveness, and enhancement of assay sensitivity. The photo-absorption spectrum of bioconjugated CdTe QD (λ max = 310 nm) confirmed nano-biomolecular interactions. The results suggest the potential application of bioconjugation and nano-biomolecular interactions of QDs for biological labeling and target analyte detection with high sensitivity.  相似文献   

16.
Tumorigenesis is the cumulative result of multiple gene mutations. The mutant proteins that are expressed by mutant genes in cancer cells are secreted into the blood and are useful biomarkers for the early diagnosis of cancer. However, some difficulties exist; for example, the same gene will express different protein mutants in different patients, and early tumors secrete only small amounts of mutant protein. Thus, the presence of mutant proteins in plasma has not previously been exploited for the early diagnosis of cancer. Proximity ligation assay is a protein-detection method that has been developed in recent years and has been widely used because of its high sensitivity. However, this approach still suffers from some shortcomings that should be addressed. In this paper, we develop a covalent-bonding tube-based proximity ligation assay (TB-PLA). The limit of detection of TB-PLA for 0.001 pM, and the method exhibited a broad dynamic range of up to seven orders of magnitude. Furthermore, we coupled the conformation-specific antibody PAb240 of p53 mutants to PCR tubes for TB-PLA. The assay was capable of detecting an approximately 500-fold lower concentration of mutant p53 in serum compared with sandwich ELISA. Thus, we demonstrate TB-PLA to be a highly sensitive and effective approach that is suitable for the early clinical diagnosis of cancer using the conformation-specific antibodies of protein mutants.  相似文献   

17.
A new convenient colorimetric sensor for fructose based on anti-aggregation of citrate-capped gold nanoparticles(Au NPs) is presented. 4-Mercaptophenylboronic acid(MPBA) induces the aggregation of Au NPs, leading to a color change from red to blue. Fructose as a potent competitor has strong affinity for MPBA and a borate ester is formed between MPBA and fructose. There is an obvious color change from blue to red with increasing the concentration of fructose. The anti-aggregation effect of fructose on Au NPs was seen by the naked eye and monitored by UV–vis spectra. Our results showed that the absorbance ratio(A_(519)/A_(640)) was linear with fructose concentration in the range of 0.032–0.96 μmol/L(R~2= 0.996), with a low detection limit of 0.01 μmol/L(S/N = 3). Notably, a highly selective recognition of fructose was shown against other monosaccharide and disaccharide(glucose, mannose, galactose,lactose and saccharose). With anti-aggregation assays higher selectivity is achievable. The results of this work provide a rapid method for evaluating the quantitative analysis of fructose in human plasma at physiologically meaningful concentrations and at neutral pH. The proposed procedure can be used as an efficient method for the precise and accurate determination of fructose.  相似文献   

18.
19.
A europium-doped apatitic calcium phosphate was synthesized at low temperature (37°C) in water–ethanol medium. This apatite was calcium-deficient, rich in hydrogen phosphate ions, and poorly crystallized with nanometric sized crystallites. It is similar to the mineral part of calcified tissues of living beings and is thus a biomimetic material. The substitution limit of Eu3+ for Ca2+ ions in this type of bioapatite ranged about 2–3%. The substitution at this temperature was facilitated by vacancies in the calcium-deficient apatite structure. As the luminescence of europium is photostable, the doped apatite could be employed as a biological probe. Internalization of these nanoparticles by human pancreatic cells in culture was observed by luminescence confocal microscopy.  相似文献   

20.
The synthesis and peptide-binding properties of a Zn(II)nitrilotriacetate complex substituted with pyrimidine hydrazine amides are reported. The metal complex provides millimolar binding affinity in aqueous buffer to peptides bearing N-terminal His. The pyrimidine heterocycles intermolecularly interact with the bound peptide and quench the emission of nearby Trp residues by energy transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号