首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method to quick extraction of vanillin and p-hydroxybenzaldheyde (PHB) of vanilla beans from vanilla fragans is proposed. Samples were irradiated with microwaves energy to accelerate the extraction process and photometric monitoring was performed at 348 and 329 nm (vanillin and PHB, respectively). The simultaneous determination of vanillin and PHB from extracts was performed using the Vierordt's method, which showed a precision, expressed as relative standard deviation, smaller 2.5% for both analytes. Conditions such as microwaves irradiation power, number of irradiation and non-irradiation cycles, irradiation time and ethanol concentration were optimized by means of multivariate screening that showed that irradiation power and number of irradiation cycles are the most significant condition in the vanilla extraction process. The focused microwave-assisted extraction (FMAE) was applied to commercial (dried vanilla beans from fresh green vanilla beans), lyophilised and dried (commercial vanilla dried at 135 °C in oven) vanilla beans samples. The results showed that the extraction of vanillin and PHB in the commercial vanilla samples were higher than in dried and lyophilised samples. With the proposed FMAE a decrease in the extraction time of 62 times and an increase in the vanillin and PHB concentrations between 40 and 50% with respect to the official Mexican extraction method, were obtained.  相似文献   

2.
p-Nitrophenyl organophosphates (OPs) including paraoxon, parathion and methyl parathion, etc, are highly poisonous OPs, for which sensitive and rapid detection method is most needed. In this work, an ultrasensitive electrochemical sensor for the determination of p-nitrophenyl OPs was developed based on ordered mesoporous carbons (OMCs) modified glassy carbon electrode (GCE) (OMCs/GCE). The electrochemical behavior and reaction mechanism of p-nitrophenyl OPs at OMCs/GCE was elaborated by taking paraoxon as an example. Experimental conditions such as buffer pH, preconcentration potential and time were optimized. By using differential pulse voltammetry, the current response of the sensor at −0.085 V was linear with concentration within 0.01–1.00 μM and 1.00–20 μM paraoxon. Similar linear ranges of 0.015–0.5 μM and 0.5–10 μM were found for parathion, and 0.01–0.5 μM and 0.5–10 μM for methyl parathion. The low limits of detection were evaluated to be 1.9 nM for paraoxon, 3.4 nM for parathion and 2.1 nM for methyl parathion (S/N = 3). Common interfering species had no interference to the detection of p-nitrophenyl OPs. The sensor can be applicable to real samples measurement. Therefore, a simple, sensitive, reproducible and cost-effective electrochemical sensor was proposed for the fast direct determination of trace p-nitrophenyl OPs at low potential without deoxygenization.  相似文献   

3.
The electrochemical detection of artemisinin generally requires high oxidation potential or the use of complex electrode modification. We find that artemisinin can react with p-aminophenylboronic acid to produce easily electrochemically detectable aminophenol for the first time. By making use of the new reaction, we report an alternative method to detect artemisinin through the determination of p-aminophenol. The calibration curve for the determination of artemisinin is linear in the range of 2 μmol L−1 to 200 μmol L−1 with the detection limit of 0.8 μmol L−1, which is more sensitive than other reported electrochemical methods. The relative standard deviation is 4.83% for the determination of 10 μM artemisinin. Because the oxidation potential of p-aminophenol is around 0 V, the present method is high selective. When 40 μM, 90 μM and 140 μM of artemisinin were spiked to compound naphthoquine phosphate tablet samples, the recoveries are 107.6%, 105.4% and 101.7%, respectively. This detection strategy is attractive for the detection of artemisinin and its derivatives. The finding that artemisinin can react with aromatic boronic acid has the potential to be exploited for the development of other sensors, such as fluorescence artemisinin sensors.  相似文献   

4.
Li G  Ji Z  Wu K 《Analytica chimica acta》2006,565(2):178-182
In the study, we developed a simple, rapid and sensitive method for the determination of tiopronin (TP) in human plasma, which was based on derivatization with p-bromophenacyl bromide (p-BPB) followed by liquid-liquid extraction and reverse-phase HPLC-UV detection. For the first time, the p-BPB was introduced into the derivatization of TP. The thiol group of TP was trapped with p-BPB to form a TP-p-BPB adduct, which can be very suitable for UV detection. From acidified plasma samples, the derivatized TP was extracted with 5 mL dichloromethane. Effective chromatographic separation was achieved using a C18 column (DIAMONSIL 150 mm × 4 mm i.d., 5 μm) based on an acetonitrile-water-trifluoroacetic acid (40:59.88:0.12, v/v/v) elution at a flow-rate of 1 mL/min. The IS and the derivatized TP were detected at 263 nm. No endogenous substances were found to interfere. The limit of quantification for derivatized TP (TP-p-BPB) in plasma was 40 ng/mL. The calibration curve for the derivatized TP showed linearity in the range 0.04-4 μg/mL with a regression coefficient corresponding to 0.9991 and the coefficient of the variation of the points of the calibration curve being lower than 10%. Extraction recoveries of the derivatized TP in plasma were greater than 72%. The method was suitably validated and successfully applied to determination of TP in human plasma samples.  相似文献   

5.
Liu AL  He FY  Hu YL  Xia XH 《Talanta》2006,68(4):1303-1308
Rapid separation and determination of acetaminophen and its hydrolysate with end-channel electrochemical (EC) detection integrated on a plastified poly(ethylene terephthalate) (PET)-toner microchip capillary electrophoresis (CE) system was investigated. In this separation and detection system, a Pt ultramicroelectrode integrated on a three-dimensional adjustor was used as working electrode. Factors influencing the separation and detection were investigated and optimized. Results show that acetaminophen and p-aminophenol can be well separated within 84 s with R.S.D. < 1% for migration time and R.S.D. < 3.6% for detection current for both analytes. Detection limits for both analytes are determined to be 5.0 μM (S/N = 3). This method has been successfully applied to the detection of trace p-aminophenol in paracetamol tablets. The results demonstrate that the PET-toner microchips can obtain better performance than PDMS microfluidic devices but at much lower cost.  相似文献   

6.
An on-line flow injection spectrofluorimetric method for the direct determination of aluminium in water samples is described. The method is based on the reaction of aluminium with N-o-vanillidine-2-amino-p-cresol (OVAC) in acidic medium at pH 4.0 to form a water-soluble complex. The excitation and emission wavelengths were 423.0 and 553.0 nm, respectively, at which the OVAC-Al complex gave the maximum fluorescence intensity at pH 4.0 in a 50% methanol-50% water medium at 50 °C. An interference from fluoride ions was minimised by the addition of Be2+. Other ions were found not to interfere at the concentrations likely to be found in natural waters. The proposed methods were validated in terms of linearity, repeatability, detection limit, accuracy and selectivity. Under these conditions, the calibration was linear up to 1000 μg L−1 (r = 0.999). The limit of detection (3σ) for the determination of Al(III) was 0.057 μg L−1 and the precision for multiple determinations of 3 ng mL−1 Al(III) prepared in ultra-pure water was found to be 0.62% (n = 10).The Schiff base ligand could be used to determine ultra-trace aluminium from natural waters. Analysis of environmental certified reference materials showed good agreement with the certified values. The procedure was found to be equally applicable to both freshwater and saline solutions, including seawater.  相似文献   

7.
The development of a mixed micellar electrokinetic capillary chromatography (MECC) method for the qualitative and quantitative determination of key components, including vanillin, 4-hydroxybenzaldehyde, 4-hydroxybenzoic acid, vanillic acid and 3-methoxybenzaldehyde, that contribute to vanilla flavour was investigated. The micellar phase consisted of sodium dodecyl sulfate (SDS) and sodium cholate (SC). The percent relative standard deviation (R.S.D.%) for migration time was <1 over six runs. The R.S.D.% for peak areas ranged between 0.85-1.96% over six runs. Peak efficiencies were excellent with theoretical plate numbers typically in the range of 130,000-200,000 per column (52 cm effective length). The limits of detection (LOD) were between 5-10 μg/ml. The quantitative data was verified by high performance liquid chromatography (HPLC) and gas chromatography (GC). The mixed MECC method was successfully applied to a number of natural vanilla extracts, nature identical extracts and synthetic flavourings.  相似文献   

8.
In this work, a method based on capillary electrophoresis with amperometric detection and far infrared-assisted extraction has been developed for the determination of rutin, gentisic acid, and quercetin in the leaves of Lycium barbarum Linn. The effects of detection potential, irradiation time, and the voltage applied on the infrared generator were investigated to acquire the optimum analysis conditions. The detection electrode was a 300-μm-diameter carbon disc electrode at a detection potential of +0.90 V. The three analytes could be well separated within 12 min in a 40 cm length fused-silica capillary at a separation voltage of 12 kV in a 50 mM borate buffer (pH 9.2). The relation between peak current and analyte concentration was linear over about 3 orders of magnitude with the detection limits (S/N = 3) of 0.31, 0.48, and 0.78 μM for rutin, gentisic acid, and quercetin, respectively. The proposed method has been applied to determine the three bioactive constituents in real plant samples.  相似文献   

9.
A highly sensitive method is described for the determination of trans,trans-muconic acid (MA), a biomarker of benzene exposure. The method is based on the derivatization of MA with an electrophoric reagent, 2-(pentafluorophenoxy)ethyl-2-(piperidino)ethanesulfonate, using potassium carbonate and 18-crown-6 ether as reaction activators. The resulting pentafluorophenoxy derivative of MA was analyzed by capillary GC with an electron-capture detector (ECD). The lower quantitation limit of the method is attainable at 0.3 μM of MA with a detection limit of about 60 nM (S/N=3) (60 fmol per 1.0 μl injection). Application of the method to the analysis of MA in urine proved feasible.  相似文献   

10.
A capillary electrophoresis (CE) and a high performance liquid chromatography (HPLC) method are described for the simultaneous determination of ethylenediaminetetraacetic acid (EDTA), S,S′-ethylenediaminedisuccinic acid (EDDS) and R,S-iminodisuccinic acid (IDS) complexing agents as their Fe(III) complexes in cosmetics like shower cream and foam bath. The non-biodegradable EDTA is used in combination with biodegradable analogues like EDDS and IDS in many commercial products. The HPLC method involves separation by reversed-phase ion pair chromatography on a C18 column using methanol-formate buffer (20 mM tetrabutylammonium hydrogen sulfate, 15 mM sodium formate adjusted to pH 4.0 with formic acid) (10:90, v/v) as mobile solvent at a flow rate of 0.8 mL min−1 at 24 °C using UV detection at 240 nm. The CE separation was performed in a fused silica capillary of 50 μm i.d. with the total length of 50 cm with a 10 mM MES and MOPSO (pH 5.5) at an applied voltage of −25 kV. The samples were introduced by applying a 50 mbar pressure for 2 s. Absorbances at 215 and 225 nm were monitored for the detection of the complexes. The methodology performance of the two methods was evaluated in terms of linearity, limit of detection (LOD), limit of quantitation (LOQ) and reproducibility. The LOD values obtained from HPLC are low when compared with CE. The applicability of both the methods was demonstrated for the analysis of cosmetic products such as shower cream and foam bath. The results obtained by both CE and HPLC were found to be comparable and in good agreement.  相似文献   

11.
Summary Thin layer chromatography on silica gel high performance layers and automated multiple development was used to separate the polar aromatic flavor compounds vanillin, ethyl vanillin, 4-hydroxybenzaldehyde, 4-hydroxybenzoic acid, 4-hydroxybenzyl alcohol, vanillic acid, coumarin, piperonal, anisic acid, and anisaldehyde commonly found in extracts of natural and artificial vanilla flavors. The ratio of 4-hydroxybenzoic acid, 4-hydroxybenzaldehyde and vanillic acid to vanillin in natural vanilla extracts was used to confirm the authenticity of extracts purchased in the United States of America and the United Kingdom. Natural vanilla extracts purchased in Mexico and Puerto Rico were identified as counterfeit products based on changes in the above ratio and the presence of synthetic flavor compounds such as ethyl vanillin and coumarin. It is also demonstrated that the proposed method is suitable for the determination of natural and synthetic vanilla flavors in solvent extracts from food, beverage and confectionery products. The main advantage of thin layer chromatography for the analysis of vanilla extracts and food stuffs flavored with vanilla is its high sample throughput since sample preparation requirements are minimal and multiple samples can be separated simultaneously.  相似文献   

12.
Jorge Yánez Heras 《Talanta》2007,71(4):1684-1689
The sequential electrochemical polymerization of aniline and N-(3-propane sulfonic acid)aniline (PSA) is proposed to construct a sensor able to detect ascorbate at physiological conditions. Compared to poly(aniline) modified electrode, a device with improved conducting and electrochemical properties at neutral pH is obtained. The electrochemical copolymerization of the same starting materials is also carried out. For a PSA:aniline ratio of 10:90, a polymer with a similar electrochemical behavior to the one grown in the sequential mode is observed.The detection of ascorbate was tested for both configurations at pH 7.2, the modified electrode is able to determine ascorbate at 0 mV versus Ag/AgCl; an optimized sensor constructed by sequential polymerization can easily detect ascorbate concentrations with a detection limit of 2.2 μM. Uric acid and dopamine does not interfere in the ascorbate determination.  相似文献   

13.
A method based on capillary electrophoresis with electrochemical detection has been developed for the separation and determination of mannitol, sucrose, glucose, and fructose in Ligustrum lucidum Ait. for the first time. Effects of several important factors such as the concentration of NaOH, separation voltage, injection time, and detection potential were investigated to acquire the optimum conditions. The detection electrode was a 300 μm diameter copper disc electrode at a working potential of +0.65 V (versus saturated calomel electrode (SCE)). The four analytes can be well separated within 13 min in a 40 cm length fused-silica capillary at a separation voltage of 12 kV in a 75 mM NaOH aqueous solution. The relation between peak current and analyte concentration was linear over about three orders of magnitude with detection limits (S/N = 3) ranging from 1 to 2 μM for all analytes. The proposed method has been successfully applied to monitor the mannitol and sugar contents in the plant samples at different growth stages with satisfactory assay results.  相似文献   

14.
Hongzhen Lian  Yuna Wei 《Talanta》2007,71(1):264-269
The chromatographic fingerprints of industrial o-toluic acid, m-toluic acid and p-toluic acid have been established by HPLC-UV detection according to their impurity groups. HPLC separation of all relative substances involved in the groups was developed on a Kromasil C18 column by using methanol-water-NH4Ac-HAc buffer (100 mM, pH 4.70) 15/65/20 (v/v/v) as the mobile phase at a flow rate of 1.5 mL/min, and detection was operated by UV adsorption at a wavelength of 254 nm. The ultraviolet spectra corresponding to each chromatographic peak were also recorded for further identification of all components. Whether the limits of relative impurities residues in a toluic acid product are qualified or not can be intuitively estimated by analyzing its chromatogram with comparison to the fingerprint. This protocol has successfully provided some Chinese manufacturers with a simple and feasible method for quality control of toluic acids for industrial use.  相似文献   

15.
The luminescence based bacterial sensor strains Pseudomonas fluorescens OS8 (pTPT11) for mercury detection and Pseudomonas fluorescens OS8 (pTPT31) for arsenite detection were used in testing their application in detecting heavy metals in soil extracts. Three different soil types (humus, mineral and clay) were spiked with 1, 100 or 500 μg g−1 Hg2+ or As3+. Samples were taken 1, 14 and 30 days and extracted with water, ammonium acetate, hydrogen peroxide and nitric acid to represent water soluble, bioavailable, organic matter bound and residual fractions, respectively. The lowest mercury-concentration measured using biosensor (0.003 μg kg−1) was considerably lower than by chemical method (0.05 μg kg−1). The sensor strain with pTPT31 appeared to have a useful detection range similar to that of chemical methods. Concentration results with chemical and biosensor analysis were very similar in the case of mercury-spiked samples. Although some of the arsenite samples showed higher variation between methods, it is concluded that the bacteria can be used as an alternative traditional methods for different types of samples.  相似文献   

16.
A novel flow-injection spectrophotometry has been developed for the determination of molybdenum(VI) at nanograms per milliliter levels. The method is based on the catalytic effect of molybdenum(VI) on the bromate oxidative coupling of p-hydrazinobenzenesulfonic acid with N-(1-naphthyl)ethylenediamine to form an azo dye (λmax = 530 nm). Chromotropic acid (4,5-dihydroxy-2,7-naphthalenedisulfonic acid) acted as an effective activator for the molybdenum(VI)-catalyzed reaction and increased the sensitivity of the method. The reaction was monitored by measuring the change in absorbance of the dye produced. The proposed method allowed the determination of molybdenum(VI) in the range 1.0-20 ng mL−1 with sample throughput of 15 h−1. The limit of detection was 0.5 ng mL−1 and a relative standard deviation for 10 ng mL−1 molybdenum(VI) (n = 10) was 2.5%. The interfering ions were eliminated by using the combination of a masking agent and on-line minicolumn packed with cation exchanger. The present method was successfully applied to the determination of molybdenum(VI) in plant foodstuffs.  相似文献   

17.
Mehretie S  Admassie S  Hunde T  Tessema M  Solomon T 《Talanta》2011,85(3):1376-1382
A sensitive and selective method was developed for the determination of N-acetyl-p-aminophenol (APAP) and p-aminophenol (PAP) using poly(3,4-ethylenedioxythiophene) (PEDOT)-modified glassy carbon electrode (GCE). Cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical reaction of APAP and PAP at the modified electrode. Both APAP and PAP showed quasireversible redox reactions with formal potentials of 367 mV and 101 mV (vs. Ag/AgCl), respectively, in phosphate buffer solution of pH 7.0. The significant peak potential difference (266 mV) between APAP and PAP enabled the simultaneous determination both species based on differential pulse voltammetry. The voltammetric responses gave linear ranges of 1.0 × 10−6-1.0 × 10−4 mol L−1 and 4.0 × 10−6-3.2 × 10−4 mol L−1, with detection limits of 4.0 × 10−7 mol L−1 and 1.2 × 10−6 mol L−1 for APAP and PAP, respectively. The method was successfully applied for the determination of APAP and PAP in pharmaceutical formulations and biological samples.  相似文献   

18.
New, simple, rapid and precise HPLC-PDA method has been developed and validated for quantification of biomarker myrsinoic acid B in stem bark extracts of Rapanea ferruginea Mez. The method employs a Phenomenex C18 column (250 mm × 4.6 mm I.D., 5 μm) with acetonitrile:methanol:water (pH 2.6 with phosphoric acid) at 48:30:22 as mobile phase, at a flow rate of 0.7 mL min−1 and photo diode array (PDA) detection at 270 nm. The validation data show that the method is specific, accurate, precise and robust. The method was linear, over a range of 5-100.0 μg mL−1, with a limit of detection of 0.369 μg mL−1 and limit of quantification of 1.233 μg mL−1. The method has also shown consistent recoveries (average of 101.3% and 0.12% RSD) of the biomarker, with low intra and inter-day relative standard deviation (1.26% and 1.62%, respectively). The evaluated hydroethanolic extract and dry extract presented MAB values of 63.53 and 36.07 mg g−1, respectively.  相似文献   

19.
Molybdate was examined as a complex-forming additive to the CE background electrolytes (BGE) to affect the selectivity of separation of polyhydric phenols such as flavonoids (apigenin, hyperoside, luteolin, quercetin and rutin) and hydroxyphenylcarboxylic acids (ferulic, caffeic, p-coumaric and chlorogenic acid). Effects of the buffer concentrations and pH and the influence of molybdate concentration on the migration times of the analytes were investigated. In contrast to borate (which is a buffering and complex-forming agent generally used in CE at pH ≥9) molybdate forms more stable complexes with aromatic o-dihydroxy compounds and hence the complex-formation effect is observed at considerably lower pH. Model mixtures of cinnamic acid, ferulic acid, caffeic acid and 3-hydroxycinnamic acid were separated with 25 mM morpholinoethanesulfonic acid of pH 5.4 (adjusted with Tris) containing 0.15 mM sodium molybdate as the BGE (25 kV, silica capillary effective length 45 cm × 0.1 mm I.D., UV-vis detection at 280 nm). With 25 mM 2-hydroxy-3-[4-(2-hydroxyethyl)-1-piperazinyl]propanesulphonic acid/Tris of pH* 7.4 containing 2 mM sodium molybdate in aqueous 25% (v/v) methanol as the BGE mixtures of all the above mentioned flavonoids, p-coumaric acid and chlorogenic acid could be separated (the same capillary as above, UV-vis detection at 263 nm). The calibration curves (analyte peak area versus concentration) were rectilinear (r > 0.998) for ≈8-35 μg/ml of an analyte (with 1-nitroso-2-naphthol as internal standard). The limit of quantification values ranged between 1.1 mg l−1 for p-coumaric acid and 2.8 mg l−1 for quercetin. The CE method was employed for the assay of flavonoids in medicinal plant extracts. The R.S.D. values ranged between 0.9 and 4.7% (n = 3) when determining luteolin (0.08%) and apigenin (0.92%) in dry Matricaria recutita flowers and rutin (1.03%) and hyperoside (0.82%) in dry Hypericum perforatum haulm. The recoveries were >96%.  相似文献   

20.
An optical probe responsive to gallium(III) ion has been developed. The gallium sensing system was prepared by incorporating 4-(p-nitrophenyl azo)-pyrocatechol (NAP) as ionophore in a plasticized PVC membrane containing tributylphosphate (TBP) as plasticizer. The sensing membrane in contact with gallium ion at pH 3.5, changes color from yellow-brown to pink-brown. Under optimum conditions, the proposed membrane displayed a linear range of 5-83 μM with a limit of detection of 4 μM. The response time of the membrane was within 10-15 min depending on the concentration of Ga3+ ions. The selectivity of the probe towards gallium determination was found to be very good. Experimental results showed that the probe could be used as an effective tool in analyzing the gallium content of water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号