首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This report presents a study of electrokinetic transport in a series of integrated macro- to nano-fluidic chips that allow for controlled injection of molecular mixtures into high-density arrays of nanochannels. The high-aspect-ratio nanochannels were fabricated on a Si wafer using interferometric lithography and standard semiconductor industry processes, and are capped with a transparent Pyrex cover slip to allow for experimental observations. Confocal laser scanning microscopy was used to examine the electrokinetic transport of a negatively charged dye (Alexa 488) and a neutral dye (rhodamine B) within nanochannels that varied in width from 35 to 200 nm with electric field strengths equal to or below 2000 V m-1. In the negatively charged channels, nanoconfinement and interactions between the respective solutes and channel walls give rise to higher electroosmotic velocities for the negatively charged dye than for the neutral dye, towards the negative electrode, resulting in an anomalous separation that occurs over a relatively short distance (<1 mm). Increasing the channel widths leads to a switch in the electroosmotic transport behavior observed in microscale channels, where neutral molecules move faster because the negatively charged molecules are slowed by the electrophoretic drag. Thus a clear distinction between "nano-" and "microfluidic" regimes is established. We present an analytical model that accounts for the electrokinetic transport and adsorption (of the neutral dye) at the channel walls, and is in good agreement with the experimental data. The observed effects have potential for use in new nano-separation technologies.  相似文献   

2.
We describe a method to study diffusion of rhodamine 6G dye in single silica nanochannels using arrays of silica nanochannels. Dynamics of the molecules inside single nanochannel is found from the change of the dye concentration in solution with time. A 10(8) decrease in the dye diffusion coefficient relative to water was observed. In comparison to single fluorescent molecule studies, the presented method does not require fluorescence of the diffusing molecules.  相似文献   

3.
Using Si as the substrate, we have fabricated multiple internal reflection infrared waveguides embedded with a parallel array of nanofluidic channels. The channel width is maintained substantially below the mid-infrared wavelength to minimize infrared scattering from the channel structure and to ensure total internal reflection at the channel bottom. A Pyrex slide is anodically bonded to the top of the waveguide to seal the nanochannels, while simultaneously enabling optical access in the visible range from the top. The Si channel bottom and sidewalls are thermally oxidized to provide an electrically insulating barrier, and the Si substrate surrounding the insulating SiO(2) layer is selectively doped to function as a gate. For fluidic field effect transistor (FET) control, a DC potential is applied to the gate to manipulate the surface charge on SiO(2) channel bottom and sidewalls and therefore their zeta-potential. Depending on the polarity and magnitude, the gate potential can accelerate, decelerate, or reverse the flow. Here, we demonstrate that this nanofluidic infrared waveguide can be used to monitor the FET flow control of charged, fluorescent dye molecules during electroosmosis by multiple internal reflection Fourier transform infrared spectroscopy. Laser scanning confocal fluorescence microscopy is simultaneously used to provide a comparison and verification of the IR analysis. Using the infrared technique, we probe the vibrational modes of dye molecules, as well as those of the solvent. The observed infrared absorbance accounts for the amount of dye molecules advancing or retracting in the nanochannels, as well as adsorbing to and desorbing from the channel bottom and sidewalls.  相似文献   

4.
A series of deoxycholic and cholic acid‐derived oligomers were synthesized and their ability to extract hydrophilic dye molecules of different structure, size, and functional groups into nonpolar media was studied. The structure of the dye and “dendritic effect” in the extraction process was examined using absorption spectroscopy and dynamic light scattering (DLS). The efficiency of structurally preorganized oligomers in the aggregation process was evaluated by 1‐anilinonaphthalene‐8‐sulfonic acid (ANS) fluorescence studies. The possible formation of globular structures for higher‐generation molecules was investigated by molecular modeling studies and the results were correlated with the anomaly observed in the extraction process with this molecule. The ability of these molecules for selective extraction of specific dyes from blended colors is also reported.  相似文献   

5.
质子化过程是大多数酸碱理论的核心,也发生在许多生命过程中。因此,研究限域环境中分子或官能团的质子化过程将为进一步认识酸碱理论和阐述限域环境中生物分子的基本行为提供理论依据。本文提出了一种以荷电电化学探针检测多孔氧化铝阵列纳米通道内表面官能团质子化过程的新方法。该方法利用纳米通道表面官能团的质子化过程改变了表面荷电性质,从而调控荷电电化学探针在纳米通道中的传输行为。实验中以喷涂在阵列氧化铝纳米通道膜一侧的薄金膜为工作电极,检测通过阵列纳米通道荷电电化学探针的流量,以此获得纳米通道限域条件下的质子化过程。同时以多孔氧化铝阵列纳米通道为限域空腔,利用硅烷化反应将氨基修饰在纳米通道的内表面,通过检测不同pH值条件下铁氰酸根离子在纳米通道中流量的变化,获得了纳米通道限域条件下氨基质子化滴定曲线。结果表明,纳米通道限域条件下氨基官能团发生一步质子化,其pK1/2值为5.9。本文提出的方法适用于研究纳米通道限域条件下其它官能团或生物分子的质子化过程。  相似文献   

6.
Controlling the direction of molecular-scale pores enables the accommodation of guest molecular-scale species with alignment in the desired direction, allowing for the development of high-performance mechanical, thermal, electronic, photonic and biomedical organic devices (host–guest approach). Regularly ordered 1D nanochannels of metal–organic frameworks (MOFs) have been demonstrated as superior hosts for aligning functional molecules and polymers. However, controlling the orientation of MOF films with 1D nanochannels at commercially relevant scales remains a significant challenge. Here, we report the fabrication of macroscopically oriented films of Cu-based pillar-layered MOFs having regularly ordered 1D nanochannels. The direction of 1D nanochannels is controllable by optimizing the crystal growth process; 1D nanochannels align either perpendicular or parallel to substrates, offering molecular-scale pore arrays for a macroscopic alignment of functional guest molecules in the desired direction. Due to the fundamental interest and widespread technological importance of controlling the alignment of functional molecules and polymers in a particular direction, orientation-controllable MOF films will open up the possibility of realising the potential of MOFs in advanced technologies.

Orientation-controlled Cu2(Linker)2DABCO MOF films on macroscopic scales are fabricated for the development of high-performance devices; the direction of 1D nanochannels is controllable either perpendicular or parallel to substrates.  相似文献   

7.
The mesoporous material MCM-41 was synthesized by a hydrothermal method, and perylene bisimide dye was incorporated into its channels by impregnation. The absorption, FTIR, fluorescence emission, and decay spectra of perylene bisimide dye in CHCl3 and in MCM-41 were studied to investigate the effect of the one-dimensional channel of MCM-41 on the photophysical and photochemical properties of the dye. The results indicated that the nanochannels of MCM-41 shifted the absorption and emission maxima to red and broadened the spectra, with loss of vibrational structure. The fluorescence decay curves fitted a double-exponential function and the lifetime of perylene bisimide dye in MCM-41 was prolonged. The huge surface area of the mesoporous molecular sieve MCM-41 prevented aggregation of dye molecules, which can thus be used at high concentration.  相似文献   

8.
Lamellar membranes with well‐defined 2D nanochannels show fast, selective permeation, but the underlying molecular transport mechanism is unexplored. Now, regular robust MXene Ti3C2Tx lamellar membranes are prepared, and the size and wettability of nanochannels are manipulated by chemically grafted hydrophilic (?NH2) or hydrophobic (?C6H5, ?C12H25) groups. These nanochannels have a sharp difference in mass transfer behavior. Hydrophilic nanochannels, in which polar molecules form orderly aligned aggregates along channel walls, impart ultrahigh permeance (>3000 L m?2 h?1 bar?1), which is more than three times higher than that in hydrophobic nanochannels with disordered molecular configuration. In contrast, nonpolar molecules with disordered configuration in both hydrophilic and hydrophobic nanochannels have comparable permeance. Two phenomenological transport models correlate the permeance with the mass transport mechanism of molecules that display ordered and disordered configuration.  相似文献   

9.
A new kind of ultrabright fluorescent and chemiluminescent difunctional mesoporous silica nanoparticle (FCMSN) is reported. A luminescent dye, Rhodamine 6G or tris(2,2′-bipyridyl)dichlororuthenium(II) hexahydrate (Rubpy), is doped inside nanochannels of a silica matrix. The hydrophobic groups in the silica matrix avoid the leakage of dye from open channels. The amines groups on the surface of the FCMSN improve the modification performance of the nanoparticle. Because the nanochannels are isolated by a network skeleton of silica, fluorescence quenching based on the inner filter effect of the fluorescent dyes immobilized in nanochannels is weakened effectively. The Quantum Yield of obtained 90 nm silica particles was about 61%. Compared with the fluorescent core–shell nanoparticle, the chemiluminescence reagents can freely enter the nanoparticles to react with fluorescent dyes to create chemiluminescence. The results show that the FCMSN are both fluorescent labels and chemiluminescent labels. In biological applications, the NaIO4 oxidation method was proven to be superior to the glutaraldehyde method. The amount of amino could affect the specificity of the FCMSN. The fluorescence microscopy imaging demonstrated that the FCMSN is viable for biological applications.  相似文献   

10.
We present a new and simple approach to fabricate wafer-scale, thin encapsulated, two-dimensional nanochannels by using conventional surface-micromachining technology and thin-film evaporation. The key steps to the realization of two-dimensional nanochannels are a fine etching of a sacrificial layer to create underetching spaces at the nanometer regime, and an accurate thin-film evaporation for encapsulation. Well-defined cross-sectional, encapsulated nanochannel arrays with dimensions as small as 20 nm in both width and height have been realized at the wafer-scale. The fabricated nanochannels with a channel length of 10mm have been used as a suitable fluidic platform for confining a solution containing nanomolar concentrations of Alexa fluorescent molecules. Initial results toward visualization of single Alexa molecules in the confined solution are reported.  相似文献   

11.
Development of all polymer-based nanofluidic devices using replication technologies, which is a prerequisite for providing devices for a larger user base, is hampered by undesired substrate deformation associated with the replication of multi-scale structures. Therefore, most nanofluidic devices have been fabricated in glass-like substrates or in a polymer resist layer coated on a substrate. This letter presents a rapid, high fidelity direct imprinting process to build polymer nanofluidic devices in a single step. Undesired substrate deformation during imprinting was significantly reduced through the use of a polymer stamp made from a UV-curable resin. The integrity of the enclosed all polymer-based nanofluidic system was verified by a fluorescein filling experiment and translocation/stretching of λ-DNA molecules through the nanochannels. It was also found that the funnel-like design of the nanochannel inlet significantly improved the entrance of DNA molecules into nanochannels compared to an abrupt nanochannel/microfluidic network interface.  相似文献   

12.
1D nanochannels modified with responsive molecules are fabricated to replicate gating functionalities of biological ion channels, but gating effects are usually weak because small molecular gates cannot efficiently block the large channels in the closed states. Now, 3D metal–organic framework (MOF) sub‐nanochannels (SNCs) confined with azobenzene (AZO) molecules achieve efficient light‐gating functionalities. The 3D MOFSNCs consisting of a MOF UiO66 with ca. 9–12 Å cavities connected by ca. 6 Å triangular windows work as angstrom‐scale ion channels, while confined AZO within the MOF cavities function as light‐driven molecular gates to efficiently regulate the ion flux. The AZO‐MOFSNCs show good cyclic gating performance and high on–off ratios up to 17.8, an order of magnitude higher than ratios observed in conventional 1D AZO‐modified nanochannels (1.3–1.5). This work provides a strategy to develop highly efficient switchable ion channels based on 3D porous MOFs and small responsive molecules.  相似文献   

13.
The fluorescing dye Pyronine Y has been incorporated by crystallization inclusion into three different one‐dimensional microporous aluminophosphate host materials. A computer‐aided rational choice of the framework of the host material made it possible to modulate the aggregation state of the guest dye molecules. Undesirable H‐type dimers of Pyronine Y are included within the large channels of the AFI structure, which allow the inclusion of any of the aggregated species of the dye. Density functional theory (DFT) calculations show that H‐type aggregate formation is suppressed within the ATS framework. Experimental results indicate that red‐emissive J‐type aggregates are formed instead, offering a one‐directional, organized, multicolour emission system that is interesting for energy transport. Complete suppression of aggregation is achieved by the inclusion of Pyronine Y within the AEL‐type structure, due to its particular topology and channel dimensions This results in a highly fluorescent hybrid system with extraordinarily preferential alignment of the chromophores. Here, we report experimental evidence and modelling insights for how the “cage effect” of the nanochannels can tune the optical properties of the hybrid composite material by influencing the aggregation state of the dye.  相似文献   

14.
Solvation dynamics in alcohols confined in silica nanochannels was examined by time-resolved fluorescence spectroscopy using coumarin 153 (C153) as a fluorescent probe. Surfactant-templated mesoporous silica was fabricated inside the pores of an anodic alumina membrane. The surfactant was removed by calcination to give mesoporous silica (Cal-NAM) containing one-dimensional (1D) silica nanochannels (diameter, 3.1 nm) whose inner surface was covered with silanol groups. By treating Cal-NAM with trimethylchlorosilane, trimethylsilyl (TMS) groups were formed on the inner surface of the silica nanochannels (TMS-NAM). Fluorescence dynamic Stokes shifts of C153 were measured in alcohols (ethanol, butanol, hexanol, and decanol) confined in the silica nanochannels of Cal- and TMS-NAMs, and the time-dependent fluorescence decay profiles could be best fitted by a biexponential function. The estimated solvent relaxation times were much larger than those observed in bulk alcohols for both Cal- and TMS-NAMs when ethanol or butanol was used as a solvent, indicating that the mobility of these alcohol molecules was restricted within the silica nanochannels. However, hexanol or decanol in Cal- and TMS-NAMs did not cause a remarkable increase in the solvent relaxation time in contrast to ethanol or butanol. Therefore, it was concluded that a relatively rigid assembly of alcohols (an alcohol chain) was formed within the silica nanochannels by hydrogen bonding interaction and van der Waals force between the surface functional groups of the silica nanochannels and alcohol molecules and by the successive interaction between alcohol molecules when alcohol with a short alkyl chain (ethanol or butanol) was used as a solvent.  相似文献   

15.
Imitating the signal transduction and transmembrane transport co ntrolled by biological channels in the cell membra ne,artificial nanochannels with a similar capability of sensing and transport are constructed as bionic nanochannels.To accomplish selective sensing and transport of biological analyte(as "guest"),the bionic nanochannels are modified with the artificial receptor(as "host"),Based on selective recognition between host and guest,bionic nanochannels translate the stimulus of the guest to electrochemical signal as sensors,and further regulate the transmission of guest as transporters.Howeve r,throughout all kinds of guests,the selective sensing and transpo rt of ions and chiral molecules is a challenging problem.And throughout all hosts of ions and chiral molecules,the macrocyclic hosts with multisite of recognition show better selectivity,such as crown ethers,cyclodextrins,calixarenes,and pillararenes.In this article,we highlight recent advances in the macrocyclic host-based nanochannels for the selective sensing and transport of ionic and chiral guests,summarize the similarities and differences of different kinds of macrocyclic host-based nanochannels,and expect the research direction and application prospect.  相似文献   

16.
In‐situ extraction and condensation of various dyes were carried out in a phase‐separation region of a thermoresponsive polymer aqueous solution generated by near infrared (NIR) laser heating under a microscope. The NIR laser irradiation was directed at a chromium line deposited on a glass substrate, thereby causing local heating of the solution due to the photothermal effect. A phase‐separation region was formed by dehydration of the thermoresponsive polymer followed by ejection of water outside of the phase‐separation region. When various dyes were included in the solution, some dye molecules were extracted into the phase‐separation region, where they condensed. In the case of poly(N‐isopropylacrylamide) (PNIPAM, 10 wt % in an aqueous solution) as the thermoresponsive polymer and crystal violet (CV) as the dye (0.1 mM ), CV condensed by about 25 times. It was found that one of the necessary conditions for the extraction/condensation is the hydrophobicity of the dye molecule; however, the dominant cause for accumulating inside the PNIPAM chain is the molecular interaction between the amide group in the side chain of PNIPAM and the functional groups such as carbonyl or amino groups in the dye molecules.  相似文献   

17.
1D nanochannels modified with responsive molecules are fabricated to replicate gating functionalities of biological ion channels, but gating effects are usually weak because small molecular gates cannot efficiently block the large channels in the closed states. Now, 3D metal–organic framework (MOF) sub-nanochannels (SNCs) confined with azobenzene (AZO) molecules achieve efficient light-gating functionalities. The 3D MOFSNCs consisting of a MOF UiO66 with ca. 9–12 Å cavities connected by ca. 6 Å triangular windows work as angstrom-scale ion channels, while confined AZO within the MOF cavities function as light-driven molecular gates to efficiently regulate the ion flux. The AZO-MOFSNCs show good cyclic gating performance and high on–off ratios up to 17.8, an order of magnitude higher than ratios observed in conventional 1D AZO-modified nanochannels (1.3–1.5). This work provides a strategy to develop highly efficient switchable ion channels based on 3D porous MOFs and small responsive molecules.  相似文献   

18.
The process of electron transport plays an essential role in the fundamental phenomena of life like photosynthesis, respiration and vision as well as in photoelectronic devices. However, the molecular mechanisms of the electron way and factors governing the transport rate in such systems are still unclear. Several groups have reported theoretical approaches for searching the mechanisms by using statistical mechanics, coherent dynamics and quantum mechanics. The current density vector inside the semiconducting layer is determined. In this paper we consider the problem of transport of electron promoted in the electrochemical cell constructed of two electrodes with the dye molecules immersed in. We describe the process of electron promotion by refractive light wave on the vacuum–semiconductor boundary as well as on the semiconducting electrode and the dye molecule layer in terms of extended phenomenological electrodynamics formalism. The results of our theoretical model show that such a theoretical approach will give more information on the mechanism of electron transport and will give insight in the determination of some electric features of materials.  相似文献   

19.
We demonstrate hydrogen-bonded structures of water in self-organized subnanoporous water treatment membranes obtained using synchrotron-based high-resolution soft X-ray emission spectroscopy. The ion selectivity of these water treatment membranes is usually understood by the size compatibility of nanochannels in the membrane with the Stokes radius of hydrated ions, or by electrostatic interaction between charges inside the nanochannels and such ions. However, based on a comparison between the hydrogen-bonded structures of water molecules in the nanochannels of the water treatment membrane and those surrounding the ions, we propose a definite contribution of structural consistency among the associated hydrogen-bonded water molecules to the ion selectivity. Our observation delivers a novel concept to the design of water treatment membranes where water molecules in the nanochannel can be regarded as a part of the material that controls the ion selectivity.  相似文献   

20.
Graphene oxide (GO) is amphiphilic in nature, due to its structure, which consists of hydrophilic oxygen‐containing functional groups and a hydrophobic basal plane of polyaromatic benzene rings. Due to this amphiphilicity, GO can create stable bubbles at water–organic solvent interfaces. In this study, the formation of bubbles at aqueous–organic interfaces in the presence of GO is investigated with different organic solvents. Bubble formation and transfer of GO from water to the organic phase is more prominent in aromatic solvents compared to aliphatic solvents, due to π–π interactions. Maximum transfer of GO from the aqueous to the organic phase is achieved at pH 2, and decreases with rising pH of the aqueous phase. Based on this property, and the ability of GO to adsorb cationic and anionic dye molecules, its application as a carrier for reactive extraction of cationic and anionic dye molecules is explored in toluene, kerosene, and carbon tetrachloride at pH 2 and 25 °C. The kinetics of the adsorption of the dyes onto GO nanosheets that takes place in the aqueous phase is also evaluated with different models, and a pseudo‐second‐order (linear) model is found to be the best fit. The adsorption isotherm data are also analyzed with different isotherm models. The electrostatic interaction and π–π interaction between the dye molecules and GO nanosheets leads to dye extraction of up to 98.2 % using this technique. The dye extraction is maximum in toluene and at low dye concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号