首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The paper describes a novel method for vanadium(V) preconcentration using microcrystalline triphenylmethane loaded with crystal violet (CV) prior to the determination by spectrophotometry. The effects of different parameters, such as the amounts of crystal violet and triphenylmethane, acidity, stirring time, various salts and metal ions etc on the enrichment yield of V(V) have been investigated to select the experimental conditions. V(V) can be completely separated from Cd(II), Pb(II), Mn(II), Co(II), Cu(II), Fe(III), Ni(II), Al(III), Zn(II) and Hg(II) by controlling acidity. Under the optimum conditions, V(V) can be totally adsorbed on the surface of microcrystalline triphenylmethane. The possible reaction mechanism of the enrichment of V(V) is discussed in detail in this paper. The detection limit of this proposed method is 0.023 μg L−1 with the preconcentration factor of 200. The recovery is in a range of 96.0–104%. The proposed method has been successfully applied to the determination of trace vanadium in various water samples with satisfactory results.  相似文献   

2.
建立了微晶蒽分离富集环境水样中痕量Co(II)的方法。在pH3.0条件下,1-亚硝基-2-萘酚与Co(II)形成红棕色螯合物被微晶蒽定量吸附,能使Co(II)与Pb(II)、Ni(II)、Mn(II)、Cu(II)、Cd(II)、Zn(II)、Fe(III)、Cr(III)、Al(III)等常见离子分离。本法富集倍数达100倍,检出限为0.14μg/L,回收率97.5%~105%,已应用于不同水样中Co(II)的测定。  相似文献   

3.
离子液体是一种绿色溶剂,可替代易挥发的有机溶剂用于液/液萃取。在阳离子表面活性剂CTMAB存在下,Mo(Ⅵ)与9-(2-羟基-5-偶氮对甲苯)苯基荧光酮(MBASF)反应形成稳定的络合物,其最大吸收波长位于522 nm。在显色后的体系中加入离子液体-1-丁基-3-三甲基硅咪唑六氟磷酸盐([C4tmsim][PF6]),Mo-MBASF络合物被高效萃取进入离子液体相。由于离子液体在萃取前后均为透明液体,可直接用于光度法测定钼。在1000 mL水样中,0~4μg Mo(Ⅵ)符合比尔定律,络合物的表观摩尔吸光系数达1.2×107L.mol-1.cm-1。绝大多数离子可大量存在,方法具有高的灵敏度和选择性,已应用于环境水样中超痕量钼的测定。  相似文献   

4.
In the present work, a minicolumn of XAD-4 loaded with 2-(5-bromo-2-pyridylazo)-5-(diethylamino)-phenol (Br-PADAP) is proposed as a preconcentration system for uranium determination in well, tap and mineral water samples by spectrophotometer using arsenazo III as the chromogenic reagent. Initially, a two-level (23) full factorial design was used for the preliminary evaluation of three factors, involving the following variables: sampling flow rate, elution flow rate, and pH. This design has revealed that, for the studied levels, buffer concentration and pH were significant factors. When the experimental conditions established in the optimization step were pH = 8.6, and an elution flow rate of 8.6 mL min?1 using 0.5% m/v ascorbic acid, this system has allowed for the determination of uranium with a detection limit (LOD) (3σ/S) of 0.05 μg L?1 and a quantification limit (LOQ) (10σ/S) of 0.16 μg L?1. The precision expressed as the relative standard deviation (R.S.D.) of 0.8% and 1.9% at 10.0 and 1.0 μg L?1, respectively- and a preconcentration factor of 184.5 for a sample volume of 50.0 mL. Accuracy was confirmed by uranium determination in the standard reference material, NIST SRM 1566b trace element units in Oyster Tissue samples, and spike tests with recuperations ranging from 93.2 to 105%; the procedure were applied for uranium determination in tap water, well water, and drinking water samples collected from Caetité and Cruz das Almas Cities, Bahia, Brazil. Five water samples were analyzed the uranium concentrations varied from 0.50 to 2.07 μg L?1  相似文献   

5.
Grabarczyk M  Koper A 《Talanta》2011,84(2):393-399
A differential pulse adsorptive stripping voltammetric method has been developed for molybdenum trace determination in environmental water samples containing organic compounds. It was proved that interferences from the organic matrix such as surface active substances and humic substances could be removed by the addition of resin to the analysed sample prior to voltammetric measurement. The parameters for Mo(VI) determination in the presence of resin, using a hanging mercury drop as the working electrode, were examined systematically for two complexing agents: cupferron and chloranilic acid. The detection limits estimated from 3 times the standard deviation for a low Mo(VI) concentrations were equal to 5 × 10−11 and 3 × 10−10 mol L−1 for cupferron and chloranilic acid, respectively. At the optimized conditions the quantitative Mo(VI) determination in the presence of even 50 mg L−1 of surface active compounds can be performed. The proposed procedures were validated in the course of Mo(VI) determination in certified reference material NASS-5 and in the course of studying recovery of Mo(VI) from spiked river water samples.  相似文献   

6.
A procedure for separation and preconcentration of trace amounts of copper in natural water samples, has been proposed. It is based on the adsorption of copper(II) ions onto a column of Amberlite XAD-2 resin loaded with calmagite reagent. This way amounts of copper within the range from 0.0125 to 25.0 μg, in a sample volume of 25 to 250 ml, and pH from 3.7 to 10.0 was concentrated as calmagite complex in a column of 0.50 g of Amberlite XAD-2 resin. Copper (II) ion was desorpted by using 5.0 ml of 2 mol l−1 hydrochloric acid. Detection and determination limits of the proposed procedure for 250 ml sample volume were 0.15 and 0.50 μg l−1, respectively. Selectivity test showed that (in the indicated concentration), calcium(II) (500 mg l−1), magnesium(II) (500 mg l−1), strontium(II) (50 mg l−1), iron(III) (10 mg l−1), nickel(II) (10 mg l−1), cobalt(II) (10 mg l−1), cadmium(II) (10 mg l−1) and lead(II) (10 mg l−1) did not interfere in copper determination by this procedure. Precision of the method, evaluated as the relative standard deviation by analyzing a series of seven replicates, was 2.42% for a copper mass of 1.0 μg in a sample volume of 100 ml. The accuracy of the proposed procedure was evaluated by means of copper determination in reference biological samples. The achieved results were in good agreement with certified values. The extractor system had a sorption capacity of 1.59 μmol of copper per gram of resin loaded with calmagite. The proposed procedure was applied for copper determination by FAAS in natural water samples. Samples were collected from different places of Salvador city, Bahia, Brazil. The achieved recovery, measured by the standard addition technique, showed that the proposed procedure had good accuracy. A good enrichment factor (50×) and simplicity are the main advantages in this analytical procedure.  相似文献   

7.
A new system for on-line preconcentration of molybdenum by sorption on a minicolumn associated to inductively coupled plasma — optical emission spectrometry with ultrasonic nebulization was studied. It is based on the sorption of molybdenum on a column packed with immobilized baker's yeasts on controlled pore glass without further complexing reagent. The molybdenum preconcentrated by biosorption was subsequently eluted with hydrochloric acid. Considering a sample flow rate of 5.0 mL min− 1, 10 mL of sample was preconcentrated in 2 min achieving a sensitive total enhancement factor of 480-fold, and the detection limit (3 s) obtained was 21 ng L− 1. Additionally, the calculated precisions expressed as percent relative standard deviation (RSD%) was 1.9%.Satisfactory results were obtained for the determination of molybdenum in standard reference material NIST 1643e Trace Elements in Water and real water samples.  相似文献   

8.
A new simple and efficient homogeneous liquid-liquid extraction method for the selective separation and preconcentration of molybdenyl ions was developed. α-Benzoin oxime (ABO) was investigated as a complexing ligand, and perfluorooctanoate ion (PFOA) was applied as a phase-separator agent under strongly acidic conditions. Under the optimal conditions ([ABO] = 2.1 × 10−3 M, [PFOA] = 1.8 × 10−2 M, [HNO3] = 1.7 M, [acetone] = 11.8% (v/v)), 10 μg of molybdenum in 5 ml aqueous phase could be extracted quantitatively into 40 μl of the sedimented phase. The maximum concentration factor was 125-fold. Thiocyanate was applied as a chromogenic reagent for the direct spectrophotometric determination of molybdenum in the sedimented phase. The reproducibility of the proposed method is at the most 2.4%.The influence of the type and concentration of acid solution, the concentration of ABO, the type and volume of the water-miscible organic solvent, the concentration of PFOA, and the effect of different diverse ions on the extraction and determination of molybdenum(VI) were investigated. The proposed method was applied to the extraction and determination of molybdenum(VI) in natural water, Spinach, and Lucerne samples. A satisfactory agreement exists between the results obtained by the proposed method and those reported by GF-AAS.  相似文献   

9.
A system for molybdenum separation and enrichment aiming its determination in water and biological samples by graphite furnace atomic absorption spectrometry (GFAAS) is proposed. The procedure is based on the sorption of the molybdenum (VI) thiocyanate complex onto a mini-column packed with polyurethane foam (PUF). The elution is accomplished by a 3.0 mol l−1 nitric acid solution. Flow variables were optimized and an enrichment factor of 10 as well as a limit of detection (LOD) (3 s) of 0.08 μg l−1 in the sample solution were achieved. The coefficient of variation showed values of 3 and 2% for molybdenum solutions of 2.0 and 10.0 μg l−1, respectively. The accuracy of the method was confirmed by the good concordance between found and certified values in the analysis of certified reference materials (CRMs) (CASS-3 Nearshore Seawater, NIST 1547 Peach Leaves, NIST 1515 Apple Leaves and NIST 1572 Citrus Leaves). The procedure was also applied for the molybdenum determination in mineral waters as well as in produced water samples. The results obtained for the mineral water samples compared well with those obtained by ICP-MS. Concerning the produced water samples, in spite of their large salinity, recoveries of 90 to 120% at the 1 μg l−1 were observed.  相似文献   

10.
In this research a new physically functionalized nanoporous silica (SBA-15) using N′-[(2-hydroxy phenyl) methylene] benzohydrazide (BBH) was utilized as a selective sorbent for the separation, preconcentration and determination of dysprosium (Dy) in natural water by inductively coupled plasma optical emission spectrometry (ICP-OES). The selectivity of BBH to Dy (III) ion was previously tested by conductometric and spectroscopic methods. Conditions for effective adsorption of Dy were optimized with respect to experimental parameters in batch process. The extraction recovery was 96.5, analytical curve was linear in the range 0.2–1000?µgL?1, and the detection limit was 0.05?ng?mL?1. The relative standard deviation (RSD) under optimal conditions was 3.2% (n?=?10). The sorbent exhibited high adsorption capacity and fast rate of equilibrium for sorption of Dy ions. The method was applied for recovery and determination of dysprosium in different environmental water samples.  相似文献   

11.
A technique for the separation and preconcentration of Cr(VI) and Cr(III) in fresh waters is presented. The analytical procedure involves the use of anion- and cation-exchange columns. The columns are eluted and the eluate is analysed for chromium using a graphite furnace atomic absorption spectrometer. The recovery of Cr(VI) and Cr(III) is 97.86 ± 1.31% and 102.36 ± 1.25% (95% confidence), respectively. The detection limits are 0.019 and 0.020 μg 1?1 for 200 ml of sample (twice the standard deviation of eleven replicate blanks). The method is rapid and the need for minimum sample handling avoids contamination problems.  相似文献   

12.
A cloud point extraction process using mixed micelle of the cationic surfactant CTAB and non-ionic surfactant TritonX-114 to extract uranium(VI) from aqueous solutions was investigated. The method is based on the color reaction of uranium with pyrocatechol violet in the presence of potassium iodide in hexamethylenetetramine buffer media and mixed micelle-mediated extraction of complex. The optimal extraction and reaction conditions (e.g. surfactant concentration, reagent concentration, effect of time) were studied and the analytical characteristics of the method (e.g. limit of detection, linear range, preconcentration, and improvement factors) were obtained. Linearity was obeyed in the range of 0.20-10.00 ng mL−1 of uranium(VI) ion and the detection limit of the method is 0.06 ng mL−1. The interference effect of some anions and cations was also tested. The method was applied to the determination of uranium(VI) in tap water, waste-water and well water samples.  相似文献   

13.
The possibility of using Thio-Michler's Ketone (TMK), 4,4′-bis(dimethylamino) thiobenzophenone, for palladium(II) concentrated by micellar extraction at the cloud-point temperature, and later spectrophotometric determination, was investigated. Under the optimum conditions, preconcentration of 50?mL of water samples in the presence of 0.1% (w/v) octylphenoxy polyethoxy ethanol (Triton X-114), 2?×?10?6?mol?L?1?TMK and 1?×?10–3?mol?L?1 buffer solution (pH?=?3.0) gave the limit of detection of 0.47?ng?mL?1, and the calibration graph was linear in the range of 2–50?ng?mL–1. The recovery under optimum working conditions was higher than 97%. The proposed method has been applied to the spectrophotometric determination of palladium(II) in natural water samples after cloud-point extraction with satisfactory results.  相似文献   

14.
Molybdenum(VI) is determined by anodic stripping voltammetry using a carbon paste electrode modified in situ with cetyltrimethylammonium bromide (CTAB). The preconcentration of molybdenum is performed by adsorption and reduction of ion-pairs of cetyltrimethylammonium and molybdenum(VI) oxalate at a potential of −0.4 V vs. the saturated calomel electrode (SCE). The supporting electrolyte contains 0.01 M oxalic acid and 0.075 mM CTAB. Differential pulse anodic stripping voltammetry exploiting the reoxidation signal is used for the determination of trace levels of molybdenum(VI). Linearity between current and concentration exists for a range of 0.5–500 μg 1−1 Mo with proper preconcentration times; the limit of detection (calculated as 3σ) is 0.04 μg 1−1 with an accumulation period of 10 min.  相似文献   

15.
Wittaya Ngeontae 《Talanta》2009,78(3):1004-630
Chemically modified silica containing amidoamidoxime group was studied as a sorbent for solid-phase extraction (SPE) and preconcentration of Cu(II) prior to determination by flame atomic absorption spectrometry (FAAS). The sorbent showed an extremely high selectivity towards Cu(II) in the pH range of 4-6, while the extraction of Pb(II), Cd(II), Ni(II) and Co(II) was low. The adsorption isotherm followed the Langmuir model and the maximum sorption capacity of 0.0163 mmol Cu(II) g−1 was achieved. In the flow system, Cu(II) was completely retained on a column containing 40 mg of the modified silica at the flow rate of 4.0 mL min−1 and quantitatively eluted by 5 mL of 1% (v/v) HNO3. No interference from Na+, K+, Mg2+, Ca2+, Cl and SO42− at 10, 100 and 1000 mg L−1 was observed. When applied for preconcentration and determination of Cu(II) in tap water, pond water, and seawater, the recoveries were 96, 101, and 95%, respectively, with high precision (% relative standard deviation (R.S.D.) < 4) and low method detection limit (9 μg L−1).  相似文献   

16.
A new method is proposed using a microcolumn (20 mm × 2.0 mm) packed with nanometer-sized zirconia as solid-phase extractor for the separation/preconcentration of Mn, Cu, Cr, Zn, Ni and Co prior to their determination by inductively coupled plasma optical emission spectrometer (ICP-OES) in environmental samples. The factors affecting the separation and preconcentration of analytes such as pH, sample flow rate and volume, eluent concentration and volume were determined, interfering ions were studied, and the optimal experimental conditions were established. The adsorption capacity of nanometer-sized ZrO2 for Mn, Cu, Cr, Zn, Ni and Co was found to be 1.3, 1.3, 1.7, 2.0, 3.9 and 1.5 mg g−1, respectively. The detection limits of the method were 12, 58, 24, 2, 7 and 36 ng L−1, respectively, with a preconcentration factor of 25. The precision of this method was 1.7% (Mn), 2.9% (Cu), 5.9% (Mn), 3.8% (Mn), 6.2% (Mn) and 4.3% (Mn) with 9 determinations of 10 ng mL−1 of target analytes, respectively. The method was successfully applied to the determination of trace metals in lake water, dried fish samples, certified reference materials of human hair and milk, and provided satisfactory results.  相似文献   

17.
An on-line nickel preconcentration and determination system implemented with inductively coupled plasma optical emission spectrometry (ICP-OES) associated to flow injection (FI) was studied. Trace amounts of nickel were preconcentrated by sorption on a conical minicolumn packed with activated carbon (AC) at pH 5.0. The nickel was removed from the minicolumn with 20% nitric acid. An enrichment factor of 80-fold for a sample volume of 50 ml was obtained. The detection limit (DL) value for the preconcentration method proposed was 82 ng l−1. The precision for ten replicate determinations at the 0.5 μg l−1 Ni level was 3.0% relative standard deviation (R.S.D.), calculated from the peak heights obtained. The calibration graph preconcentration method for nickel was linear with a correlation coefficient of 0.9997 at levels near the detection limits (DL) up to at least 100 μg l−1. The method was successfully applied to the determination of nickel in natural water samples.  相似文献   

18.
Removal and recovery of Mo(VI) from aqueous solutions were investigated using maghemite (γ-Fe2O3) nanoparticles. Combination of nanoparticle adsorption and magnetic separation was used to the removal and recovery of Mo(VI) from water and wastewater solutions. The nanoscale maghemite with mean diameter of 50 nm was synthesized by reduction coprecipitation method followed by aeration oxidation. Various factors influencing the adsorption of Mo(VI), e.g. pH, temperature, initial concentration, and coexisting common ions were studied. Adsorption reached equilibrium within <10 min and was independent of initial concentration of Mo(VI). Studies were performed at different pH values to find out the pH at which maximum adsorption occurred. The maximum adsorption occurred at pHs between 4.0 and 6.0. The Langmuir adsorption capacity (qmax) was found to be 33.4 mg Mo(VI)/g of the adsorbent. The results showed that nanoparticle (γ-Fe2O3) is suitable for the removal of Mo(VI), as molybdate, from water and wastewater samples. The adsorbed Mo(VI) was then desorbed and determined spectrophotometrically using bromopyrogallol red as a complexation reagent. This allows the determination of Mo(VI) in the range 1.0–86.0 ng mL−1.  相似文献   

19.
In this research work, a new approach is developed for the extractive determination of chromium. The principle of this approach is based on the complexation reaction between 4-(4?-chlorobenzylideneimino)-3-methyl-5-mercapto-1,2,4-triazole (CBIMMT) in dichloromethane as a complexing reagent and chromium(III) in presence of potassium iodide to form a yellow coloured complex at room temperature. The 1:2:2 [Cr(III)-CBIMMT-iodide] ternary complex was quantitatively extracted in dichloromethane from 2.5 mol L?1 of hydrochloric acid medium which showed maximum absorption intensity at λmax 411 nm and was stable for more than 72 h. The values of molar absorption coefficient and Sandell’s sensitivity of the complex were found to be 0.7019 × 104 L mol?1 cm?1 and 0.00748 µg cm?2, respectively. The system adheres to Beer’s law from 1.5 to 6.0 µg mL?1; however, Ringbom’s plot suggests optimal concentration range was 1.8–5.8 µg mL?1. The limit of detection and limit of quantification of the approach is 0.26 and 0.79 µg mL?1. This approach was successfully used for the determination of chromium from wastewater effluents from the tannery industries (Kolhapur, MS, India), alloy samples and for separation of it from synthetic mixtures. The present experimental approach is apparently much simpler than the conventional method comprising multistep processes.  相似文献   

20.
Arpa Şahin C  Durukan I 《Talanta》2011,85(1):657-661
In this article, a new ligandless solidified floating organic drop microextraction (LL-SFODME) method has been developed for preconcentration of trace amount of cadmium as a prior step to its determination by flow injection-flame atomic absorption spectrometry (FI-FAAS). The methodology is based on the SFODME of cadmium with 1-dodecanol in the absence of chelating agent. Several factors affecting the microextraction efficiency, such as, pH, sodium dodecylbenzenesulfonate (SDBS) concentration, extraction time, stirring rate and temperature were investigated and optimized. Under optimized experimental conditions an enhancement factor of 205 was obtained for 100 mL of sample solution. The calibration graph was linear in the range of 1.0-25.0 ng mL−1, the limit of detection (3s) was 0.21 ng mL−1 and the limit of quantification (10s) was 0.62 ng mL−1. The relative standard deviation (RSD) for 10 replicate measurements of 10 ng mL−1 cadmium was 4.7%. The developed method was successfully applied to the extraction and determination of cadmium in standard and several water samples and satisfactory results were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号