首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cyclic voltammetric behavior of five common pesticides such as dicofol (DCF), cypermethrin (CYP), monocrotophos (MCP), chlorpyrifos (CPF) and phosalone (PAS) was investigated at a poly 3,4-ethylenedioxythiophene modified glassy carbon electrode (PEDOT/GCE). A method was developed for the detection and determination of these pesticides in trace level flowing stream, based on their redox behavior. The square wave stripping voltammetric principle was used to analyze the selected pesticides on PEDOT/GCE. Varying the accumulation potential and accumulation time, the best accumulation conditions were found out. Effects of initial scan potential, square wave pulse amplitude, step potential and frequency were examined for the optimization of stripping conditions. The peak current responses of analyte under optimum conditions were correlated over flow rate by using wall-jet PEDOT/GCE assembly. The calibration plots were linear over the pesticide's concentration range 0.10-72.60 μg l−1 for DCF, 0.41-198.24 μg l−1 for CYP, 0.22-220.95 μg l−1 for MCP, 0.35-259.69 μg l−1 for CPF and 1.07-141.46 μg l−1 for PAS. The limit of detection was obtained between <0.09 and <1.0 μg l−1 for five pesticides. It is low enough for trace pesticide determination in real samples. This method is applied for the determination of the five pesticides in soil samples. The recovery values obtained in spiked soil samples are 95.4 ± 5.4% for DCF, 93.7 ± 4.2% for CYP, 85.3 ± 8.4% for MCP, 94.6 ± 6.6% for CPF and 93.5 ± 4.9% for PAS.  相似文献   

2.
In this work, we describe an automated stripping analyzer operating on a hybrid flow-injection/sequential-injection (FIA/SIA) mode and utilizing a bismuth-film electrode (BiFE) as a flow-through sensor for on-line stripping voltammetry of trace metals. The instrument combines the advantages of FIA and SIA and is characterised by simplicity, low-cost, rapidity, versatility and low consumption of solutions. The proposed analytical flow methodology was applied to the determination of Cd(II) and Pb(II) by anodic stripping voltammetry (ASV) and of Ni(II) and Co(II) by adsorptive stripping voltammetry (AdSV). The steps of the rather complex experimental sequence (i.e. the bismuth-film formation, the analyte accumulation, the voltammetric stripping and the electrode cleaning/regeneration) were conducted on-line and the critical parameters related to the respective analytical procedures were investigated. In ASV, for a accumulation time of 180 s the limits of detection for Cd(II) and Pb(II) were 2 and 1 μg l−1, respectively (S/N = 3) and the relative standard deviations were 5.3% and 4.7%, respectively (n = 8). In AdSV, for a total sample volume of 1000 μl, the limits of detection for Ni(II) and Co(II) were 1 μg l−1 (S/N = 3) and the relative standard deviations were 5.5% and 6.2%, respectively (n = 8). The measurement frequency ranged between 15 and 20 stripping cycles h−1. The results indicate that the BiFE is well suited as a flow-through detector for on-line stripping analysis and, by virtue of its low toxicity, can serve as a viable alternative to mercury-based flow-through electrodes.  相似文献   

3.
This work reports the determination of trace Co(II) by adsorptive stripping voltammetry on disposable three-electrode cells with on-chip metal-film electrodes. The heart of the sensors was a bismuth-film electrode (BiFE) with Ag and Pt planar strips serving as the reference and counter electrodes, respectively. Metals were deposited on a silicon chip by sputtering while the areas of the electrodes were patterned via a metal mask. Co(II) was determined by square wave adsorptive stripping voltammetry (SWAdSV) after complexation with dimethylglyoxime (DMG). The experimental variables (the DMG concentration, the preconcentration potential, the accumulation time and the SW parameters), as well as potential interferences, were investigated. Using the selected conditions, the 3σ limit of detection was 0.09 μg l−1 of Co(II) (for 90 s of preconcentration) and the relative standard deviation for Co(II) was 3.8% at the 2 μg l−1 level (n = 8). The method was applied to the determination of Co(II) in a certified river water sample. These mercury-free electrochemical devices present increased scope for field analysis and μ-TAS applications.  相似文献   

4.
Two methods of the determination of cobalt and chromium in human urine of non-occupationally exposed populations—highly sensitive catalytic adsorptive stripping voltammetry (CAdSV) and electrothermal atomic absorption spectrometry (ET-AAS)—are evaluated and compared. The CAdSV methods are based on adsorptive accumulation of a cobalt-nioxime (1,2-cyclohexanedione dioxime) or a chromium-DTPA (diethylenetriammine-N,N,N′,N″,N″-pentaacetic acid) complexes on a hanging mercury drop electrode, followed by a stripping voltammetric measurement of the catalytic reduction current of the adsorbed complex in the presence of sodium nitrite in case of cobalt or in the presence of sodium nitrate in case of chromium determination. In the CAdSV procedure UV-photolysis was used for the sample pre-treatment; the ET-AAS determination did not require any separate preliminary decomposition of the analyte urine samples. The accuracy of the procedures was checked by the analysis of commercially available quality control urine samples. The detection limits (3σ) were 0.13 μg l−1 for Co and 0.18 μg l−1 for Cr in ET-AAS determination and 0.007 μg l−1 for Co and 0.002 μg l−1 for Cr in CAdSV measurements. Precision (R.S.D.) was less than 5% for both methods. The study has shown that the CAdSV is a more reliable and sensitive technique for the determination of very low cobalt and chromium contents in urine, the detection of which is not possible when using the AAS technique.  相似文献   

5.
In situ mercury film electrode produced in the presence of thiocyanate has been shown extremely useful for highly sensitive adsorptive stripping voltammetric measurements of atrazine down to sub-μg L−1 level. Operational parameters have been optimized and the stripping voltammetric performance has been investigated using square wave scans. The adsorptive stripping response is linear over the range of 0.5-60 μg L−1 atrazine, with a detection limit of 0.024 μg L−1. The method has been applied to the determination of atrazine in soil and water samples.  相似文献   

6.
A sensitive anodic stripping voltammetric procedure at the bismuth film electrode (BFE) for trace analysis of copper (II) in the presence of gallium is presented. The new protocol circumvents the problems of overlapping stripping signals between copper and bismuth that previously hampered the analysis of copper at the BFE. The results illustrate that the addition of gallium not only improves the reproducibility of the bismuth stripping signal but also facilitates much improved resolution between the stripping signals of bismuth and copper. Investigations into the effect of gallium on the stripping response of copper and bismuth were studied showing a 4:1 gallium:copper mole ratio produces optimum signals from bismuth and copper indicating a possible stoichiometric relationship. Optimisation of other key variables including electrolyte composition, accumulation parameters and appropriate waveform settings were studied and optimised. The optimised procedures show a range of linear calibration plots (R2 > 0.994) ranging from 2 to 500 μg L−1 and the relative standard deviation for a solution containing 100 μg L−1 copper was 3.7% (n = 10). Utilising an accumulation time of 300 s the limit of detection was 1.4 μg L−1 (S/N = 3). This technique was successfully applied to the analysis of copper in tap water representing the first successful copper determination in real samples using the BFE.  相似文献   

7.
Kefala G  Economou A  Sofoniou M 《Talanta》2006,68(3):1013-1019
This work reports the use of adsorptive stripping voltammetry (AdSV) for the determination of aluminium on a rotating-disc bismuth-film electrode (BiFE). Al(III) ions in the non-deoxygenated sample were complexed with cupferron and the complex was accumulated by adsorption on the surface of the preplated BiFE. The stripping step was carried out by using a square-wave (SW) potential-time voltammetric excitation signal. The experimental variables as well as potential interferences were investigated and the figures of merit of the method were established. Using the selected conditions, the 3σ limit of detection for aluminium was 0.5 μg l−1 at a preconcentration time of 240 s and the relative standard deviation was 4.2% at the 5 μg 1−1 level for a preconcentration time of 120 s (n = 8). The accuracy of the method was established by analysing water and metallurgical samples.  相似文献   

8.
Alireza Mohadesi 《Talanta》2007,71(2):615-619
A differential pulse anodic stripping voltammetric method was developed for the determination of Ag(I) at a 3-amino-2-mercapto quinazolin-4(3H)-one modified carbon paste electrode. The analysis procedure consisted of an open circuit accumulation step in stirred sample solution for 12 min. This was followed by medium exchange to a clean solution where the accumulated Ag(I) was reduced for 15 s in −0.6 V. Subsequently an anodic potential scan was effected from −0.2 to +0.2 V to obtain the voltammetric peak. The detection limit of silver(I) was 0.4 μg L−1 and R.S.D. for 10, 100 and 200 μg L−1 silver(I) were 2.4, 1.8 and 1.3%, respectively. The calibration curve was linear for 0.9-300 μg L−1 silver(I). Many coexisting ions had little or no effect on the determination of silver(I). The procedure was applied to determination of silver(I) in X-ray photographic films and natural waters. In X-ray photographic film samples, the results have compared to those obtained by atomic absorption spectroscopy.  相似文献   

9.
Dos Santos LB  Abate G  Masini JC 《Talanta》2004,62(4):667-674
This paper presents the optimization of instrumental and solution parameters for determination of atrazine in river waters and formulation by square wave voltammetry (SWV) using a hanging mercury drop electrode. The best sensitivity (35.2±0.4 μA ml μg−1) was achieved using a frequency of 400 Hz and a medium composed of 40 mmol l−1 Britton-Robinson (BR) buffer at pH 1.9. The detection limit was 2 μg l−1 with a linear dynamic range between 10 and 250 μg l−1. Application of the method to real samples of river waters fortified with 10 μg l−1 of atrazine resulted recoveries between 92 and 116%. Additionally, good agreement was observed between results obtained by the proposed method and by HPLC for river water samples spiked with 25 μg l−1 of atrazine. The determination was not affected by the presence of humic acid at concentration of 5 mg l−1, indicating that interactions of the herbicide with this class of compounds are fully labile. The stability of the voltammetric signal for samples spiked with 250 μg l−1 atrazine was evaluated over a period of 14 days in four samples. For two samples, no systematic variation was observed, while for the other two, a decrease of peak current between 3 and 15% occurred, suggesting that the stability is dependent on the sample nature. HPLC analyses suggest formation of deethylatrazine during the second week of storage in the samples for which the SWV peak current had the more intense decrease.  相似文献   

10.
Wang J  Lu D  Thongngamdee S  Lin Y  Sadik OA 《Talanta》2006,69(4):914-917
Bismuth-coated glassy carbon electrodes have been successfully applied for catalytic adsorptive stripping voltammetric measurements of low levels of vanadium(V) in the presence of chloranilic acid (CAA) and bromate ion. The new protocol is based on the accumulation of the vanadium-chloranilic acid complex from an acetate buffer (pH 5.5) solution at a preplated bismuth film electrode held at −0.35 V (versus Ag/AgCl), followed by a square-wave voltammetric scan. Factors influencing the adsorptive stripping performance, including the CAA and bromate concentrations, solution pH, and accumulation potential or time have been optimized. The response compares favorably with that observed at mercury film electrodes. A linear response is observed over the 5-25 μg/L concentration range (2 min accumulation), along with a detection limit of 0.20 μg/L vanadium (10 min accumulation). High stability is indicated from the reproducible response of a 50 μg/L vanadium solution (n = 25; R.S.D. = 3.1%). Applicability to a groundwater sample is illustrated.  相似文献   

11.
We report for the first time the synthesis of bismuth-modified (3-mercaptopropyl) trimethoxysilane (MPTMS) and its application for the determination of lead and cadmium by anodic stripping voltammetry. Xerogels made from bismuth-modified MPTMS and mixtures of it with tetraethoxysilane, under basic conditions (NH3·H2O), were characterized with scanning electron microscopy, energy dispersive spectroscopy, infrared spectroscopy and electrochemical methods. Bismuth-modified xerogels were mixed with 1.5% (v/v) Nafion in ethanol and applied on glassy carbon electrodes. During the electrolytic reductive deposition step, the bismuth compound on the electrode surface was reduced to metallic bismuth. The target metal cations were simultaneously reduced to the respective metals and were preconcentrated on the electrode surface by forming an alloy with bismuth. Then, an anodic voltammetric scan was applied in which the metals were oxidized and stripped back into the solution; the voltammogram was recorded and the stripping peak heights were related to the concentration of Cd(II) and Pb(II) ions in the sample. Various key parameters were investigated in detail and optimized. The effect of potential interferences was also examined. Under optimum conditions and for preconcentration period of 4 min, the 3σ limit of detection was 1.3 μg L−1 for Pb(II) and 0.37 μg L−1 for Cd(II), while the reproducibility of the method was 4.2% for lead (n = 5, 10.36 μg L−1 Pb(II)) and 3.9% for cadmium (n = 5, 5.62 μg L−1 Cd(II)). Finally, the sensors were applied to the determination of Cd(II) and Pb(II) ions in water samples.  相似文献   

12.
Safavi A  Maleki N  Shahbaazi HR 《Talanta》2006,68(4):1113-1119
A sensitive method for the determination of chromium ion(VI) in complex matrices such as crude oil and sludge is presented based on the decreasing effect of Cr(VI) on cathodic adsorptive stripping peak height of Cu-adenine complex. Under the optimum experimental conditions (pH 7.5 Britton-Robinson buffer, 5 × 10−5 M copper, 8 × 10−6 M adenine and accumulation potential −250 mV versus Ag/AgCl), a linear decrease of the peak current of Cu-adenine was observed, when the chromium(VI) concentration was increased from 5 μg L−1 to 120 μg L−1. Detection limit of 2 μg L−1 was achieved for 120 s accumulation time. The relative standard deviations (R.S.D., %) were 1.8% and 4% for chromium(VI) concentrations of 18 μg L−1 and 100 μg L−1, respectively. The method was applied to the determination of chromium(VI) in the presence of high levels of chromium(III), in various real samples such as crude oil, crude oil tank button sludge, waste water and tap water samples. Effects of foreign ions and surfactants on the voltammetric peak and the influences of instrumental and analytical parameters were investigated in detail. The accuracy of the results was checked by ICP and/or AA.  相似文献   

13.
A bismuth bulk electrode (BiBE) has been investigated as an alternative electrode for the anodic stripping voltammetric (ASV) analysis of Pb(II), Cd(II), and Zn(II). The BiBE, which is fabricated in-house, shows results comparable to those of similar analyses at other Bi-based electrodes. Metal accumulation is achieved by holding the electrode potential at −1.4 V (vs. Ag/AgCl) for 180 s followed by a square wave voltammetric stripping scan from −1.4 to −0.35 V. Calibration plots are obtained for all three metals, individually and simultaneously, in the10-100 μg L−1 range, with a detection limit of 93, 54, and 396 ng L−1 for Pb(II), Cd(II), Zn(II), respectively. A slight reduction in slope is observed for Cd(II) and Pb(II) when the three metals are calibrated simultaneously vs. individually. Comparing the sensitivities of the metals when calibrated individually vs. in a mixture reveals that Zn(II) is not affected by stripping in a mixture. However, Pb(II) and Cd(II) have decreasing sensitivities in a mixture. The optimized method has been successfully used to test contaminated river water by standard addition. The results demonstrate the ability of the BiBE as an alternative electrode material in heavy metal analysis.  相似文献   

14.
《Analytica chimica acta》2002,471(2):173-186
An automated and versatile sequential injection spectrofluorimetric procedure for the simultaneous determination of multicomponent mixtures in micellar medium without prior separation processes is reported. The methodology is based upon the segmentation of a sample slug between two different buffer zones in order to attain both an improvement of sensitivity and residual minimization for the whole species. Resolution of overlapping fluorescence profiles is achieved using a variable angle scanning technique coupled to multivariate least-squares regression (MLR) algorithms at both sample edges.The potentialities of the described methodology are illustrated with the spectrofluorimetric determination of four widespread pesticides with different acid-base properties; viz. carbaryl (CBL) (1-naphthyl-N-methylcarbamate), fuberidazole (FBZ) (2-(2′-furyl)benzimidazole), thiabendazole (TBZ) (2-(4′-thiazolyl)benzimidazole) and warfarin (W) (3-α-acetonylbenzyl)-4-hydroxycoumarin). Detection limits at the 3σ level were 3.9, 0.02, 0.03 and 10 μg l−1 for CBL, FBZ, TBZ and W, respectively at the maximum sensitivity pH. Dynamic ranges of 13-720 μg l−1 CBL, 0.10-14 μg l−1 FBZ, 0.19-60 μg l−1 TBZ and 0.05-5 mg l−1 W were achieved. Relative standard deviations (n=10) were 0.2% for 100 μg l−1 CBL and 2.4 μg l−1 FBZ, 0.7% for 8 μg l−1 TBZ and 1.0% for 1 mg l−1 W. The proposed automated methodology, which handles 17 samples/h, was validated and applied to spiked real water samples with very satisfactory results.  相似文献   

15.
A 4-(2-pyridylazo)-resorcinol (PAR)-modified carbon ceramic electrode (CCE) prepared by the sol-gel technique has been reported for the first time in this paper. By immersing the CCE in aqueous solution of PAR (0.001 mol L−1), after a short period of time, a thin film of PAR was rapidly formed on the surface of the electrode due to its strong adsorption properties. A differential pulse anodic stripping voltammetric (DPASV) method was developed for determination of Ag(I) at the modified carbon ceramic electrode. The analysis procedure consisted of an open circuit accumulation step in a sample solution which was continuously stirred for 12 min. This was followed by replacing the medium with a clean solution where the accumulated Ag(I) was reduced for 15 s in −0.6 V. Then, the potential was scanned from −0.2 to +0.2 V to obtain the voltammetric peak. The detection limit of silver(I) was 0.123 μg L−1, and for seven successive determinations of 10, 100 and 200 μg L−1 Ag(I), the relative standard deviations were 2.1, 1.4 and 1.03%, respectively. The calibration curve was linear for 0.5-300 μg L−1 silver(I). The procedure was applied to determine silver(I) in X-ray photographic films and super-alloy samples.  相似文献   

16.
A cost-effective sequential injection system incorporating with an in-line UV digestion for breakdown of organic matter prior to voltammetric determination of Zn(II), Cd(II), Pb(II) and Cu(II) by anodic stripping voltammetry (ASV) on a hanging mercury drop electrode (HMDE) of a small scale voltammetric cell was developed. A low-cost small scale voltammetric cell was fabricated from disposable pipet tip and microcentrifuge tube with volume of about 3 mL for conveniently incorporated with the SI system. A home-made UV digestion unit was fabricated employing a small size and low wattage UV lamps and flow reactor made from PTFE tubing coiled around the UV lamp. An in-line single standard calibration or a standard addition procedure was developed employing a monosegmented flow technique. Performance of the proposed system was tested for in-line digestion of model water samples containing metal ions and some organic ligands such as strong organic ligand (EDTA) or intermediate organic ligand (humic acid). The wet acid digestion method (USEPA 3010a) was used as a standard digestion method for comparison. Under the optimum conditions, with deposition time of 180 s, linear calibration graphs in range of 10-300 μg L−1 Zn(II), 5-200 μg L−1 Cd(II), 10-200 μg L−1 Pb(II), 20-400 μg L−1 Cu(II) were obtained with detection limit of 3.6, 0.1, 0.7 and 4.3 μg L−1, respectively. Relative standard deviation were 4.2, 2.6, 3.1 and 4.7% for seven replicate analyses of 27 μg L−1 Zn(II), 13 μg L−1 Cd(II), 13 μg L−1 Pb(II) and 27 μg L−1 Cu(II), respectively. The system was validated by certified reference material of trace metals in natural water (SRM 1640 NIST). The developed system was successfully applied for speciation of Cd(II) Pb(II) and Cu(II) in ground water samples collected from nearby zinc mining area.  相似文献   

17.
Halosulfuron methyl, a fast-acting herbicide and is absorbed into leaf tissue within 1-2 days and translocated through the vascular system, interrupting amino acid production within the plant, can be detected using glassy carbon electrode the technique of adsorptive stripping voltammetry. The adsorptive stripping voltammetric behavior of halosulfuron methyl was investigated in pH range 1.0-10.0. Halosulfuron methyl was irreversibly oxidized at a glassy carbon electrode. Electrochemical techniques including adsorptive stripping voltammetry and cyclic voltammetry were employed to study the oxidation mechanism. The experimental parameters such as the accumulation potential, accumulation time and frequency were optimized. The linear range, detection limit and quantification for halosulfuron methyl were evaluated by adsorptive stripping voltammetry. Under the optimized conditions, the peak current is linear to halosulfuron methyl concentration in the range 4.1-50.0 μg mL−1. Limit of detection and limit of quantification were 1.23 and 4.10 μg mL−1, respectively. The interference of inorganic species and other some pesticides on the voltammetric response have been studied. The applicability to spiked soil and natural water was described and the recoveries for the standards added are 103.8% and 108.2%, respectively. The method is successfully applied for the determination of halosulfuron methyl in commercial formulation.  相似文献   

18.
Sensitive and stable monitoring of heavy metals in seawater using screen-printed electrodes (SPE) is presented. The analytical performance of SPE coupled with square wave anodic stripping voltammetry (SWASV) for the simultaneous determination of Pb and Cd in seawater samples, in the low μg L−1 range, is evaluated. The stripping response for the heavy metals following 2 min deposition was linear over the concentration range examined (10-2000 μg L−1) with detection limits of 1.8 and 2.9 μg L−1 for Pb and Cd, respectively. The accuracy of the method was validated by analyzing metal contents in different spiked seawater samples and comparing these results to those obtained with the well-established anodic stripping voltammetry using the hanging mercury drop electrode. Moreover, a certified reference material was also used and the results obtained were satisfactory.  相似文献   

19.
Hydrogen evolution bothers stripping analysis significantly. Dioctyl phthalate-based carbon paste electrode exhibits extremely wide cathodic potential window. It is explored as a powerful substrate electrode to solve the problem of hydrogen evolution and further improve reproducibility for stripping analysis using bismuth-coated electrodes for the first time. It was successfully applied to the simultaneous determination of Zn2+, Cd2+, and Pb2+. Linear responses are obtained for Zn2+ in the range of 10–100 μg L−1 and for Pb2+ and Cd2+ in the range of 5–100 μg L−1. The detection limits for Zn2+, Cd2+, and Pb2+ are 0.1 μg L−1, 0.22 μg L−1 and 0.44 μg L−1, respectively. The method has been successfully applied to the determination of Zn2+, Cd2+, and Pb2+ in waste water samples. The detection strategy based on the combination of dioctyl phthalate-based carbon paste electrode and bismuth-coated electrodes holds great promise for stripping analysis.  相似文献   

20.
This works reports the use of square-wave adsorptive stripping voltammetry (SWAdSV) for the simultaneous determination of Ni(II) and Co(II) on a rotating-disc bismuth-film electrode (BFE). The metal ions in the non-deoxygenated sample were complexed with dimethylglyoxime (DMG) and the complexes were accumulated by adsorption on the surface of the BFE. The stripping step was carried out by using a square-wave potential-time voltammetric excitation signal. Electrochemical cleaning of the bismuth film was employed, enabling the same bismuth film to be used for a series of measurements. The experimental variables (choice of the working electrode substrate, the presence of oxygen, the DMG concentration, the buffer concentration, the preconcentration potential, the accumulation time, the rotation speed and the SW parameters) as well as potential interferences were investigated and the figures of merit of the methods were established. Using the selected conditions, the 3σ limits of detection were 70 ng l−1 for Co(II) and 100 ng l−1 for Ni(II) (for 300 s of preconcentration) and the relative standard deviations were 2.3% for Co(II) and 3.9% for Ni(II) at the 2 μg l−1 level (n = 8). Finally, the method was applied to the determination of nickel and cobalt in real samples with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号