首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
BiFe1−xNixO3 ceramic powders with x up to 0.10 have been prepared by the sol-gel technique. The band gap of BiFeO3 is 2.23 eV, and decreases to 2.09 eV for BiFe0.95Ni0.05O3 and BiFe0.90Ni0.10O3. The Mössbauer spectra show sextet at room temperature, indicating the magnetic ordering and the presence of only Fe3+ ions. Superparamagnetism with blocking temperature of 31 K for BiFe0.95Ni0.05O3 and 100 K for BiFe0.90Ni0.10O3 was observed. Enhanced magnetization at room temperature have been observed (1.0 emu/g for BiFe0.95Ni0.05O3 and 2.9 emu/g for BiFe0.90Ni0.10O3 under magnetic field of 10,000 Oe), which is one order larger than that of BiFeO3 (0.1 emu/g under magnetic field of 10,000 Oe). The enhanced magnetization was attributed to the suppression of the cycloidal spin structure by Ni3+ substitution and the ferrimagnetic interaction between Fe3+ and Ni3+ ions.  相似文献   

3.
杨昌平  李旻奕  宋学平  肖海波  徐玲芳 《物理学报》2012,61(19):197702-197702
本文研究了在真空、空气和氧气中烧结制备的三种 CaCu3Ti4O12陶瓷材料的介电特性. 交流阻抗测量结果表明在10—300 K温度范围, 三种样品的介电温谱中均出现三个平台, 其电阻实部和电容虚部在相应温度出现损耗峰, 真空条件烧结的样品具有较高的介电平台和较明显的电阻实部与电容虚部峰值, 表明氧含量和氧空位对CaCu3Ti4O12的介电性质具有重要影响, 介电温谱出现的三个平台分别源于晶粒、晶界及氧空位陷阱.温谱分析表明晶粒的激活能与烧结气氛有较大关系,氧空位引起的电子短程跳跃及跳跃产生的极化子是晶粒电导和电容的主要起源.氧空位陷阱的激活能基本与烧结气氛无关,约为0.46 eV. 氧空位对载流子的陷阱作用是CaCu3Ti4O12 低频高介电常数的重要起源.  相似文献   

4.
李强  黄多辉  曹启龙  王藩侯 《中国物理 B》2013,22(3):37101-037101
The first-principles projector-augmented wave method employing the quasi-harmonic Debye model,is applied to investigate the thermodynamic properties and the phase transition between the trigonal R3c structure and the orthorhombic Pnma structure.It is found that at ambient temperature,the phase transition from the trigonal R3c phase to the orthorhombic Pnma phase is a first-order antiferromagnetic-nonmagnetic and insulator-metal transition,and occurs at 10.56 GPa,which is in good agreement with experimental data.With increasing temperature,the transition pressure decreases almost linearly.Moreover,the thermodynamic properties including Grneisen parameter,heat capacity,entropy,and the dependences of thermal expansion coefficient on temperature and pressure are also obtained.  相似文献   

5.
The effect of magnetic annealing treatment on the magnetization of multiferroic BiFeO3 was studied systematically. A series of pelletized nano-sized BiFeO3 powders were annealed at high temperature under different magnetic fields. Typical ferromagnetic hysteresis loops were obtained at room temperature of the ceramics which were derived from ferromagnetic BiFeO3 precursors. On the other hand, antiferromagnetic behaviors were observed in other samples synthesized from nonmagnetic precursors. The enhanced magnetic properties were ascribed to the magnetic anisotropy which was induced by the strong magnetic fields. This work indicates that the strong magnetic annealing method is an alternative approach to tuning the magnetic properties of high performance multiferroic materials with canted antiferromagnetic ordering.  相似文献   

6.
The phase transition of BiFeO3 (BFO) from tetragonal to monoclinic induced by pressure was investigated by first-principles method. The sequential monoclinic phase, MaMa, which is favorable during low compression with respect to the tetragonal phase, was characterized. The order parameters were calculated in the vicinity of the phase transition, showing that phase transition has a second-order character. The results demonstrated that the pressure-induced tetragonal-to-monoclinic phase transition in BFO is related to the softening behavior of the E mode, which are very helpful in further investigations of the morphotropic phase boundary (MPB) in lead-free materials.  相似文献   

7.
魏杰  陈彦均  徐卓 《物理学报》2012,61(5):57502-057502
采用乙二胺四乙酸杂化溶胶法制备了不同晶粒尺寸的纯相BiFeO3纳米颗粒,并利用X射线衍射仪、扫描电镜、超导量子干涉仪和Mossbauer 谱系统研究了其结构、形貌以及磁性能.结果表明: BiFeO3纳米颗粒具有明显的弱铁磁性,并呈现强烈的尺寸依赖特性; 这种弱铁磁性主要源于纳米材料的尺寸限制效应,而非杂质相或Fe2+ 的存在所致.  相似文献   

8.
Ca2+ and Ba2+ ions co-doped BiFeO3 nanoparticles, Bi0.8Ca0.2−xBaxFeO3 (x=0-0.20), were prepared by a sol-gel method. The phase structure, grain size, dielectric and magnetic properties of the prepared samples were investigated. The results showed that the lattice structure of the nanoparticles transformed from rhombohedral (x=0) to orthorhombic (x=0.07-0.19) and then to tetragonal (x=0.20) with x increased. The dielectric properties of the nanoparticles were affected by the properties of the substitutional ions as well as the crystalline structure of the samples. The magnetic properties of the nanoparticles were greatly improved and the TN of the nanoparticles was obviously increased. All the Ca2+ and Ba2+ ions co-doped BiFeO3 nanoparticles presented the high ratio of Mr/M from 0.527 to 0.571 and large coercivity from 4.335 to 5.163 KOe.  相似文献   

9.
Ferroelectric BiFeO3 thin films and artificial superlattices of (BiFeO3)m(SrTiO3)m (m∼1-10 unit cells) were fabricated on (0 0 1)-oriented SrTiO3 substrates by pulsed laser ablation. The variation of leakage current and macroscopic polarization with periodicity was studied. Piezo force microscopy studies revealed the presence of large ferroelectric domains in the case of BiFeO3 thin films while a size reduction in ferroelectric domains was observed in the case of superlattice structures. The results show that the modification of ferroelectric domains through superlattice could provide an additional control on engineering the domain wall mediated functional properties.  相似文献   

10.
Ferroelectric and fatigue behavior of bilayered thin films consisting of Mn4+-modified BiFeO3 and Zn2+-modified BiFeO3, which were deposited on SrRuO3-buffered Pt coated silicon substrates, were systematically investigated. The (1 1 1) orientation is induced for the BiFe0.95Mn0.05O3/BiFe0.95Zn0.05O3 bilayer, due to the introduction of the bottom BiFe0.95Zn0.05O3 layer. With increasing the thickness ratio of the BiFe0.95Mn0.05O3 layer, their leakage current decreases, and the fatigue endurance is greatly improved owing to the introduction of the BiFe0.95Mn0.05O3 layer with a lower fatigue rate. The BiFe0.95Mn0.05O3/BiFe0.95Zn0.05O3 bilayer with the thickness ratio of 3:1 exhibits a larger remanent polarization of 2Pr ∼ 161.0 μC/cm2 than those of bilayers with different thickness ratios, while their coercive field slightly increases with increasing the thickness ratio of the BiFe0.95Mn0.05O3 layer.  相似文献   

11.
Influence of magnetic annealing at 823 K up to 10 T (T) on the phonon behaviors of nanocrystalline BiFeO3 was investigated by Raman spectroscopy. The frequencies of fundamental Raman modes increase obviously with increasing annealing magnetic field, and the intensity of the 1260 cm−1 two-phonon mode decreases. The pronounced anomalies of Raman phonon modes under magnetic annealing are attributed to the change of the spin-phonon coupling due to the modulation of spiral spin order. Furthermore, the temperature dependence of Raman peak positions, for the two prominent modes (147 and 176 cm−1), show no notable anomaly around TN except the sample annealed under 10 T magnetic field; meanwhile, in this sample, another obvious phonon anomaly occurs at ∼150 K (another magnetic phase transition point), which indicate that stronger magnetic annealing with 10 T intensely enhances the spin-phonon coupling, and possibly increases magnetoelectric coupling of nanocrystalline BiFeO3 due to severely modulation of spiral spin order.  相似文献   

12.
0.7BiFeO3-0.3PbTiO3 (BFPT7030) thin films were deposited on SiO2/Si substrates by sol-gel process. The influence of heating rate on the crystalline properties of BFPT7030 thin films were studied by X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). XRD patterns of the films showed that a pure perovskite phase exists in BFPT7030 films annealed by rapid thermal annealing (RTA) technique. SEM and AFM observations demonstrated that the BFPT7030 films annealed by RTA at 700 °C for 90 s with the heating rate of 1 °C s−1 could show a dense, crack-free surface morphology, and the films’ grains grow better than those of the films annealed by RTA at the same temperature with other heating rates. XPS results of the films indicated that the ratio of Fe3+:Fe2+ is about 21:10 and 9:5 for the films annealed by RTA at 700 °C for 90 s with the heating rate of 1 and 20 °C s−1, respectively. That means the higher the heating rate, the higher the concentration of Fe2+ in the BFPT7030 thin films.  相似文献   

13.
We have performed magnetization and magnetocapacitance measurements on ceramic samples of the multiferroic series Bi1−xLaxFeO3 for 0≤x≤.0.25. We show that doping with La reduces the transition magnetic field from the spatially modulated state to a homogenous one and increases the magnetocapacitance, these effects being the strongest for x=0.15, which is the highest concentration for maintaining the non-centrosymmetric rhomboedral structure (R3c) of BiFeO3. For highest La content (x≥0.17), analysis of the XRD patterns shows that the lattice symmetry gradually changes to orthorhombic (C222), giving rise to an enhancement of the latent magnetization and to a drop of the magnetodielectric constant.  相似文献   

14.
The Nd-doped BiFeO3 thin films were prepared on SnO2(FTO) substrates spin-coated by the sol–gel method using Nd(NO3)3·6H2O, Fe(NO3)3·9H2O and Bi(NO3)3·5H2O as raw materials. The microstructure and electric properties of the BiFeO3 thin films were characterized and tested. The results indicate that the diffraction peak of the Nd-doped BiFeO3 films is shifted towards right as the doping amounts are increased. The structure is transformed from the rhombohedral to pseudotetragonal phase. The crystal grain is changed from an elliptical to irregular polyhedron. Structure transition occurring in the Bi0.85Nd0.15FeO3 films gives rise to the largest Pr of 64 μC/cm2. The leakage conductance of the Nd doped thin films is reduced. The dielectric constant and dielectric loss of Bi0.85Nd0.15FeO3 thin film at 10 kHz are 190 and 0.017 respectively.  相似文献   

15.
The leakage current behaviours of polycrystalline BiFeO3 thin films are investigated by using both conductive atomic force microscopy and current-voltage characteristic measurements. The local charge transport pathways are found to be located mainly at the grain boundaries of the films. The leakage current density can be tuned by changing the post-annealing temperature, the annealing time, the bias voltage and the light illumination, which can be used to improve the performances of the ferroelectric devices based on the BiFeO3 films. A possible leakage mechanism is proposed to interpret the charge transports in the polycrystalline BiFeO3 films.  相似文献   

16.
BiFeO3-CoFe2O4 epitaxial nanocomposites have been deposited on SrTiO3 (0 0 1) substrates by pulsed laser deposition. We present here a study of the influence of the deposition temperature (TS), in the 550-800 °C range, on the film composition, morphology and microstructure. Electron-probe microanalysis shows strong reduction of the Bi content in the films when increasing TS. Films prepared at TS=750 °C and above are virtually Bi-free. X-ray diffraction (XRD) data show that, due to the volatility of Bi, there is a progressive reduction in the amount of BiFeO3. The deposition temperature and the concomitant presence of FexOy spurious phases in the nanocomposites grown at high temperature promote radical changes in film morphology and magnetization. It thus follows that a temperature range suitable for controlled modification of nanocomposites morphology would be extremely narrow.  相似文献   

17.
冯宏剑  刘发民 《中国物理 B》2009,18(4):1574-1577
In this paper the first-principles calculations within local spin density approximation (LSDA)+U show that BiFeO3 experiences a mixed phase state with P4mm structure being the intermediate phase before the pressure of phase transition is reached. The critical pressure for the insulator-metal transition (IMT) is found to be about 50 GPa. A pressure induced crossover of high-spin states and low-spin states is observed close to the IMT pressure in R3c structure. The LSDA+U calculations account well for the mechanism of the IMT and crossover of spin states predicted in recent experiment (Ref.[1]).  相似文献   

18.
La and Co co-doped BiFeO3 ((Bi1−xLax)(Fe0.95Co0.05)O3 (x=0, 0.10, 0.20, 0.30)) ceramics were prepared by tartaric acid modified sol–gel method. The X-ray diffraction patterns indicate a transition from rhombohedral structure to tetragonal structure at x=0.20, which has been confirmed by the Raman measurements. The band gap increases with increasing x to 0.20, and then decreases with further increasing x to 0.30. The structural transition has significant effects on the multiferroic properties. The remnant magnetization and saturate ferromagnetic magnetization decrease abruptly with increasing x to 0.10, and then gradually increase with further increasing x up to 0.30. The coercivity is significantly reduced with increasing La doping concentration. The ferroelectricity has been improved by La doping, and the polarization increases with increasing x to 0.10, then decreases with further increasing x up to 0.30. The simultaneous coexistence of soft ferromagnetism and ferroelectricity at room temperature in tetragonal Bi0.70La0.30Fe0.95Co0.05O3 indicates the potential multiferroic applications.  相似文献   

19.
Bi(Fe0.95Co0.05)O3 films were prepared on conductive indium tin oxide (ITO)/glass substrates by chemical solution deposition. Well saturated polarization hysteresis loop has been observed with a remnant polarization value of about 22 μC/cm2 at room temperature. Weak ferromagnetism with saturation magnetization of about 3 emu/cm3 was observed at room temperature. The clear observation of both room temperature ferroelectric and ferromagnetic properties suggests the potential multiferroic applications of Bi(Fe0.95Co0.05)O3.  相似文献   

20.
BiFeO3 (BFO) ceramics of different grain size have been synthesized by spark plasma sintering of sol-gel derived nanoparticles. It was found that with decreasing grain size there occurs an enhancement in magnetization and a simultaneous suppression in current leakage. According to systematic materials characterization, the enhanced magnetization is attributed to the enriched grain boundaries where the missing structural order perturbs the spin helix structure of BFO and thus generates uncompensated spins, while the reduced current leakage is ascribed to fewer conduction paths provided by the compacted grain structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号