首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
依据褪色分光光度法对BrO3--甲基红-NaCl体系进行了研究,实验表明,在518nm为最大吸收波长下,测定了该反应的动力学参数,确定了反应速率方程式,得知该反应的总反应级数为2.5级,表观活化能为55.82k J/mol,活化能为66.87kJ/mol,实验还测定了其他离子对该反应的催化作用,达到了预期的结果.  相似文献   

2.
本文研究TiO2以及金属(Cu、Ni)掺杂TiO2催化剂水解制氢的两种不同析氢反应机理,计算了不同反应过程催化反应活化能,同时考察了系列催化剂电子激发态的催化活性.结果表明:催化剂电子激发态的催化活性增强,说明光照有助于降低反应的活化能,提高催化剂的活性.金属(Cu、Ni)掺杂TiO2有助于降低水解制氢反应的活化能,且Cu的掺杂催化效果更明显,这与实验报道的结果一致.  相似文献   

3.
通过在铁基触媒中添加适量的碳化硼,制备出了具有不同硼含量的含硼金刚石单晶。利用差热分析仪,测量了含硼金刚石单晶的差热和热重。采用Kissinger方法,计算了含硼金刚石单晶在加热过程中发生氧化反应的表观活化能,对比分析掺硼量对含硼金刚石单晶热稳定性的影响。结果表明:差热和热重测量值与表观活化能计算值的变化规律基本一致;随着掺硼量的增加,含硼金刚石单晶的热稳定性先提高后降低,剧烈氧化时表观活化能随着掺硼量的增加而减小。  相似文献   

4.
运用核磁共振(NMR)方法分别测定了表面活性剂辛基苯聚氧乙烯醚(TX-100)和十六烷基三甲溴化铵(CTAB)在不同温度下的临界胶束浓度.阐述了应用1D NMR线型分析方法对表面活性剂快交换体系平均停留时间的定量测量.实验测量了TX-100和CTAB胶束溶液中表面活性剂分子在不同温度下的平均停留时间.结果显示,平均停留时间随温度的增加逐渐减小,说明TX-100和CTAB分子进出胶束的速率随温度的增加逐渐加快.利用阿伦尼乌斯公式拟合,获得了TX-100和CTAB的表观交换活化能,TX-100的表观交换活化能为17.6 k J/mol,CTAB的表观交换活化能为75.3 k J/mol.对TX-100和CTAB平均停留时间和表观交换活化能进行分析,得出平均停留时间和表观交换活化能与分子结构的关系:表观交换活化能反映的是疏水相互作用和静电斥力的大小;而平均停留时间不仅受活化能的影响,还与分子结构有关.  相似文献   

5.
采用密度泛函理论(DFT)中的M06方法,以二甲基甲酰胺(DMF)溶剂,研究了无催化剂、PdCl_2为催化剂催化芳基硼酸与溴代芳烃的交叉偶联反应的反应机理.使用6-311+G*基组(Pd采用赝势基组Lan L2DZ)对芳基硼酸与溴代芳烃Suzuki-Miyaura偶联反应过程中所有反应物、中间体、过渡态和产物的几何构型进行了优化,同时进行了频率计算,各过渡态都有唯一虚频,确认了中间体和过渡态的合理性;通过自然键轨道(NBO)理论和分子内原子理论(AIM)理论分析了分子轨道间的相互作用.结果发现:在没有催化剂的条件下,Suzuki-Miyaura偶联反应形成的反应速控步骤活化能为49.70 kcal/mol,在PdCl_2催化作用下,反应速控步骤活化能为31.08 kcal/mol,比较研究结果,PdCl_2能有效催化该反应的进行,我们的研究结果与实验结果相吻合.  相似文献   

6.
:采用密度泛函理论(DFT)中的M06方法, 以二甲基甲酰胺(DMF)溶剂, 研究了无催化剂、PdCl2为催化剂催化芳基硼酸与溴代芳烃的交叉偶联反应的反应机理. 使用6-311+G*基组 (Pd采用赝势基组LanL2DZ) 对芳基硼酸与溴代芳烃Suzuki-Miyaura偶联反应过程中所有反应物、中间体、过渡态和产物的几何构型进行了优化, 同时进行了频率计算, 各过渡态都有唯一虚频, 确认了中间体和过渡态的合理性; 通过自然键轨道(NBO)理论和AIM理论分析了分子轨道间的相互作用. 结果发现: 在没有催化剂的条件下, Suzuki-Miyaura偶联反应形成的反应速控步骤活化能为49.70 kcal/mol, 在PdCl2催化作用下, 反应速控步骤活化能为31.08 kcal/mol, 比较研究结果, PdCl2能有效催化该反应的进行, 我们的研究结果与实验结果相吻合.  相似文献   

7.
关于聚氨酯反应的动力学研究,国内外文献都不少见。他们研究的对象多是4,4-二苯甲基二异氰酸酯(MDI)、甲苯二异氰酸酯(TDI)及二异氰酸酯(HDI)、而对于苯二甲撑二异氰酸酯(XDI)活性的研究至今未见报导。本工作采用一种新的红外定量方法、对XDI在催化剂的存在下与聚环氧丙烷二醇、以1,2-丙二醇作扩链剂时,在N,N-二甲基甲酰胺溶液中的聚合动力学进行了研究,求出了该体系的反应级数n,反应速率常数K,表观活化能E和指前因子A。  相似文献   

8.
采用密度泛函理论(DFT)中的B3LYP方法在6-311+G(d,p)的计算水平上研究了铁原子与SO_2在三重态以及五重态反应势能面上的反应机理.全参数优化了三重态以及五重态反应势能面上各驻点的几何构型,并用频率分析法以及内禀反应坐标(IRC)方法对过渡态进行了验证,得到了该反应的反应势能面曲线和微观反应路径.结果表明,铁原子与SO2在三重态与五重态反应势能面上的几何构型相似,三重态的能量均比五重态高,说明铁原子与SO_2的反应主要在五重态反应势能面上进行.整个体系为放热反应,反应的活化能为30.6 k Cal/mol.  相似文献   

9.
 以聚醚二元醇、甲苯二异氰酸酯为原料,合成了聚醚型聚氨酯预聚体(PUP)。采用该预聚体、扩链剂1,4-丁二醇、交联剂三羟甲基丙烷对TDE-85/甲基四氢邻苯二甲酸酐(MeTHPA)环氧树脂体系进行改性,通过示差扫描量热法与红外光谱法分析,探讨了聚氨酯(PU)改性环氧树脂体系固化反应机理及固化反应动力学特征。固化反应机理研究表明,TDE-85与MeTHPA之间的固化反应形成环氧聚合物网络Ⅰ,1,4-丁二醇及三羟甲基丙烷同PUP进行了扩链、交联反应形成了PU聚合物Ⅱ。异氰酸酯基同环氧基反应,使得聚合物Ⅰ与聚合物Ⅱ形成了接枝化学键。固化反应动力学研究表明,PU的加入可明显降低环氧树脂固化反应的表观活化能,活化能由TDE-85/MeTHPA树脂体系时的83.14 kJ/mol降至PU改性后的67.91 kJ/mol。  相似文献   

10.
活化能(Ea)是反应中一个重要的物理量,与反应速度直接相关,因此本实验计划利用一个新的循环催化流动分析方法(RCFA),测定愈创木酚(GA)-HRP-H2O2反应体系的活化能。RCFA系统为循环回路,人为干扰因素小,能够对酶催化过程实现连续检测,得到的测定结果准确度高。使用RCFA系统在可见光谱下测定得到GA-HRP-H2O2体系完整动力学曲线,由此求解得到酶催化反应表观速率常数(k),最后利用阿仑尼乌斯公式求得该催化反应体系的活化能(Ea)=53.46±0.097kJ.mol-1,指前因子(AE)=2.5×103±0.099min-1;Ea与AE的相对标准偏差分别为0.18%和3.81%,结果表明在一级反应阶段的不同区段中HRP催化反应的活化能和指前因子均为常数。  相似文献   

11.
采用密度泛函理论(DFT)中的B3LYP方法对Cu I催化苯丙氨酸与溴苯发生C-N偶联反应机理进行了理论研究.在6-31+G*水平上对反应过程中所有反应物、过渡态、中间体以及产物的几何构型进行了优化,通过能量和振动分析证实了过渡态的真实性;并且在相同基组水平上应用自然键轨道(NBO)和分子中的原子(AIM)理论分析了这些化合物的成键特征和轨道间的相互作用.研究发现了两条可能的反应通道IA与IB,其控制步骤活化能分别为202.81 k J.mol-1、196.10 k J.mol-1,由以上结果比较可以看出,反应通道IA与IB在整个反应过程可能同时发生,但IB反应通道具有较低的活化能,即IB通道为整个反应的最优反应通道.  相似文献   

12.
采用傅里叶变换红外光谱仪(FTIR)“原位”跟踪了聚氨酯脲的固化过程,实验结果表明:本体聚合反应中,反应初期转化率、反应规律表现为良好的二级动力学关系,给出了反应初期的动力学常数。反应后期高转化率时,反应规律受温度影响较大。温度较低时,反应受扩散控制影响,NCO和NH_2反应的二级反应动力学速率常数逐渐变小;温度较高时,反应速率常数变大。按照反应初期的动力学数据拟合出DMTDA的固化活化能为26.4kJ·mol~(-1),加入催化剂有机锡DBTDL后,反应体系的固化活化能(26.5kJ·mol~(-1))保持恒定,改变DBTDL的浓度,转化率随反应时间变化的动力学曲线保持不变,因此DBTDL对NCO与NH_2的反应无催化作用。否定了脲键自催化的理论,提出了可能的反应机理。  相似文献   

13.
采用溶胶-凝胶法制备了CeO_2/TiO_2催化剂,对CeO_2/TiO_2催化剂上NH_3选择性催化还原NO反应进行了动力学研究。实验结果表明:NO转化速率与NO成一级反应,与NH_3成零级反应,与O_2成0.5级反应,反应主要遵循Eley-Rideal机理进行;该反应的活化能为51.2 kJ/mol。  相似文献   

14.
采用密度泛函理论(DFT)研究了钯催化苯乙烯与N-氟代双苯磺酰胺反应机理.在B3LYP/6-311+G*基组水平上对反应过程中所有反应物、过渡态、中间体以及产物的几何构型进行了优化,通过能量和振动分析确认了过渡态的真实性;并且在相同基组水平上应用自然键轨道(NBO)和分子中的原子(AIM)理论分析了这些化合物的成键特征和轨道间的相互作用.研究发现了两条可能的反应通道IA与IB,其控制步骤活化能分别为17.81 k J.mol-1、56.04k J.mol-1,由以上比较结果可以看出,IA通道具有较低的活化能,即IA通道为整个反应的最优反应通道,与实验结果一致.此外我们还研究了溶剂对反应的影响.  相似文献   

15.
用密度泛函理论对一种新式反铂抗癌药物trans-[PtCl2(3-pico)(isopropylamine)]的水解机理进行了研究.研究中选用两个模型,即模型一为反应物和产物均为孤立状态,模型二为反应物和产物处于络合状态.运用B3LYP/6-31G**泛函方法对反应物、产物和过渡态的几何结构进行了全面优化.发现水解过程中过渡态结构与文献中报道的三角双锥结构吻合.反应络合物与产物络合物中所包含的进入基团(水分子)和离去基团(氯离子)对反应的热力学和动力学都产生了很大影响:模型二的两步反应活化能垒分别比模型一提高了约26.3和23.8 kJ/mol,吸热量比模型一分别降低了约420.5和771.2 kJ/mol.采用IEF-PCM模型进行水溶液计算,模型一两步反应的活化能垒比气相值分别提高约27.6和6.7 kJ/mol,模型二则分别降低约7.9和29.3 kJ/mol.经过熵修正后整个体系第一步水解的反应活化能全部上升了而第二步则恰好相反,第二步水解的活化能垒始终高于第一步.  相似文献   

16.
在70℃水浴条件下,柠檬酸三钠(TCA)还原HAuCl_4反应进行缓慢,加入石墨烯量子点(GQDs)作催化剂,反应加快。增大GQDs的加入量,反应随之显著增强,体系中生成的金纳米粒子增多,产生较高的共振瑞利散射(RRS)强度。在加入BaCl_2配体后,GQDs表面被BaCl_2包裹,抑制了GQDs的催化作用;当溶液中硫酸根离子(SO_4~(2-))存在时,生成BaSO_4沉淀,GQDs从BaCl_2表面脱离,此时GQDs恢复其催化作用,并随着SO_4~(2-)浓度的增加,GQDs的脱附量增多,体系的反应速度加快,催化反应随之增强,RRS信号线性增强。信号增强值与SO_4~(2-)在0.067~1.67μmol·L~(-1)范围内呈良好线性关系,检测限为0.041μmol·L~(-1),线性方程为ΔI_(570nm)=93.3c+0.4。  相似文献   

17.
NH3的催化分解一直是制备高纯度氢的有效途径之一,因此具有良好的催化活性的贵金属被广泛的应用于催化解离的研究中.然而,由于纯金属催化剂的利用效率低,增加催化成本.最近的研究发现单原子催化剂Ir1/MoS2以其突出的优势被认为是一种潜在的能替代现有贵金属催化剂的材料.本文采用密度泛函理论与周期性平板模型相结合的方法,研究了NH3在单原子催化剂Ir1/MoS2上的吸附与活化.结果表明:NH3的优势吸附位为Ir原子的顶位,构型为倾斜结构(atop),NH3与体系表面的金属Ir成键,吸附能达到1.63 eV,是化学吸附;进一步分析了NH3直接催化分解的反应路径,给出了相应的反应热、活化能,结果显示NH3在atop位的解离比脱附有利,第一步脱氢反应活化能最小,N-H键易断裂,第二步反应能垒较高,此步为整个反应的决速步.  相似文献   

18.
采用2-乙基己基膦酸-2-乙基己基单酯(PC-88A)-CHCl3大块液膜体系,研究了搅拌速度、载体浓度、反应体系温度对Pb离子迁移的影响,原子吸收光谱法测定料液相和解析相中Pb离子浓度,获得了不同反应温度下的表观反应速率常数、Pb离子在膜相中的最大值以及出现最大值的时间、Pb离子在萃取与反萃取反应中进入和流出液膜的最大通量、萃取与反萃取表观反应活化能分别为 31.65和23.11 kJ·mol-1。结果表明,实验值与理论值能够很好地吻合,Pb离子的迁移过程可以用两个串联的准一级不可逆过程描述,化学反应为控速步骤。  相似文献   

19.
采用多参考组态相互作用方法和 aug-cc-pV5z 基组并虑及 Davidson 修正计算了反应体系 F H_2→HF H 的约15,000个对称性唯一的构型点的势能值,并利用三次样条插值发展了该体系的三维全域势能面.在反应入口通道,还考虑了旋轨耦合效应.  相似文献   

20.
基于甲酸盐–碳酸氢盐的可逆循环技术可实现一体化制氢-储氢,具有储运便捷、安全性高等显著优势。然而,该技术的推广应用受限于碳酸氢盐储氢量及甲酸盐放氢性能。本文对甲酸盐制氢催化剂开展深入探究,将Pd-M(M=Co, Cu, Ni)合金催化剂应用于反应体系中,并结合X射线衍射、透射电子显微镜等表征与性能测试,揭示催化剂结构与制氢性能之间的构效关系。本论文的研究成果可对甲酸盐制氢体系的推广和应用提供理论指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号