首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liquid film flow due to an unsteady stretching sheet   总被引:1,自引:0,他引:1  
We have studied two-dimensional flow of a thin liquid film over an impulsively stretching sheet under assumption of uniform initial film thickness. Using singular perturbation technique both momentum and film evolution equations are solved analytically for small Reynolds number and these solutions are verified numerically. Numerical computation for large Reynolds number shows an anomalous behaviour of film thinning rate in different time zone. These results are explained physically and the crucial role-played by viscosity in this case is highlighted. It is found that faster rate of thinning can be obtained if the sheet is stretched impulsively with continuously increasing stretching speed.  相似文献   

2.
An analysis is carried out to study the flow and heat transfer characteristics in a second grade fluid over a stretching sheet with prescribed surface temperature including the effects of frictional heating, internal heat generation or absorption, and work due to deformation. In order to solve the fourth-order non-linear differential equation, associated with the flow problem, a fourth boundary condition is augmented and a proper sign for the normal stress modulus is used. It is observed that for a physical flow problem the solution is unique. The solutions for the temperature and the heat transfer characteristics are obtained numerically and presented by a table and graphs. Furthermore, it is shown that the heat flow is always from the stretching sheet to the fluid.  相似文献   

3.
An analysis has been carried out to study the magnetohydrodynamic boundary layer flow and heat transfer characteristics of a laminar liquid film over a flat impermeable stretching sheet in the presence of a non-uniform heat source/sink. The basic unsteady boundary layer equations governing the flow and heat transfer are in the form of partial differential equations. These equations are converted to non-linear ordinary differential equations using similarity transformation. Numerical solutions of the resulting boundary value problem are obtained by the efficient shooting technique. The effects of magnetic and the non-uniform heat source/sink parameters on the dynamics are discussed. Findings of the paper reveal that non-uniform heat sinks are better suited for effective cooling of the stretching sheet. Skin friction coefficient and the local Nusselt number are also explored for typical values of magnetic and non-uniform heat source/sink parameters. The results are in excellent agreement with the earlier published works, under some limiting cases.  相似文献   

4.
This paper presents a study of the flow and heat transfer of an incompressible homogeneous second grade fluid past a stretching sheet. The governing partial differential equations are converted into ordinary differential equations by a similarity transformation. The effects of viscous dissipation and work due to deformation are considered in the energy equation and the variations of dimensionless surface temperature and dimensionless surface temperature gradient with various parameters are graphed and tabulated. Two cases are studied, namely, (i) the sheet with constant surface temperature (CST case) and (ii) the sheet with prescribed surface temperature (PST case).  相似文献   

5.
Magnetohydrodynamic flow of an electrically conducting power-law fluid over a stretching sheet in the presence of a uniform transverse magnetic field is investigated by using an exact similarity transformation. The effect of magnetic field on the now characteristics is explored numerically, and it is concluded that the magnetic field tends to make the boundary layer thinner, thereby increasing the wall friction.  相似文献   

6.
The present paper deals with the analysis of boundary layer flow and heat transfer of a dusty fluid over a stretching sheet with the effect of non-uniform heat source/sink. Here we consider two types of heating processes namely (i) prescribed surface temperature and (ii) prescribed surface heat flux. The momentum and thermal boundary layer equations of motion are solved numerically using Runge Kutta Fehlberg fourth–fifth order method (RKF45 Method). The effects of fluid particle interaction parameter, Eckert number, Prandtl number, Number of dust particle and non-uniform heat generation/absorption parameter on temperature distribution are analyzed and also the effect of wall temperature gradient function and wall temperature function are tabulated and discussed.  相似文献   

7.
A steady boundary layer flow of a non-Newtonian Casson fluid over a power-law stretching sheet is investigated. A self-similar form of the governing equation is obtained, and numerical solutions are found for various values of the governing parameters. The solutions depend on the fluid material parameter. Dual solutions are obtained for some particular range of these parameters. The fluid velocity is found to decrease as the power-law stretching parameter β in the rheological Casson equation increases. At large values of β, the skin friction coefficient and the velocity profile across the boundary layer for the Casson fluid tend to those for the Newtonian fluid.  相似文献   

8.
Similarity solution of the laminar boundary layer equations corresponding to an unsteady stretching surface have been studied. The governing time-dependent boundary layer are transformed to ordinary differential equations containg Prandtl number and unsteadiness parameter. The effect of various govern-ing parameters such as Prandtl number and unsteadiness param-eter which determine the velocity and temperature profiles and heat transfer coefficient are studied.  相似文献   

9.
This article studies the three-dimensional boundary layer flow of an elasticoviscous luid over a stretching surface. Velocity of the stretching sheet is assumed to be ime-dependent. Effect of mass transfer with higher order chemical reaction is further onsidered. Computations are made by the homptopy analysis method (HAM). Convergence f the obtained series solutions is explicitly analyzed. Variations of embedding arameters on the velocity and concentration are graphically discussed. Numerical computations f surface mass transfer are reported. Comparison of the present results with he numerical solutions is also given.  相似文献   

10.
This article studies the three-dimensional boundary layer flow of an elasticoviscous fluid over a stretching surface. Velocity of the stretching sheet is assumed to be time-dependent. Effect of mass transfer with higher order chemical reaction is further considered. Computations are made by the homptopy analysis method (HAM). Convergence of the obtained series solutions is explicitly analyzed. Variations of embedding parameters on the velocity and concentration are graphically discussed. Numerical computations of surface mass transfer are reported. Comparison of the present results with the numerical solutions is also given.  相似文献   

11.
Exact solutions are obtained for the heat transfer in an electrically conducting fluid past a stretching sheet subjected to the thermal boundary with either a prescribed temperature or a prescribed heat flux in the presence of a transverse magnetic field. The solutions for the heat transfer characteristics are evaluated numerically for different parameters, such as the magnetic parameterN, the Prandtl numberPr, the surface temperature indexs, and the surface heat flux indexd. It is observed that for the prescribed surface temperature case the fluid temperature increases due to the existance of the magnetic field, and decreases as the Prandtl number or the surface temperature index increases; for the prescribed surface heat flux case, the surface temperature decreases as the Prandtl number of the surface heat flux index increases, and the magnetic parameter decreases. In addition, varying the prescribed surface temperature indexs affects the mechanism of heat transfer.  相似文献   

12.
The effects of non-uniform heat generation/absorption and viscous dissipation on heat transfer of a non-Newtonian power-law fluid on a non-linearly stretching surface have been examined. The governing nonlinear partial differential equations describing the problem are transformed to a system of non-linear ordinary differential equations by using suitable similarity transformation. The transformed system of ordinary differential equations is solved numerically using fourth order Runge-Kutta method with the shooting technique. Graphical solutions for the dimensionless temperature are presented and discussed for various values of the power-law index parameter, the Prandtl number, the heat generation/absorption parameter and the Eckert number. The results show that the local Nusselt number is reduced with increasing the Eckert number or the heat generation parameter, whereas the heat absorption parameter has the effect of enhancing the local Nusselt number.  相似文献   

13.
Steady two-dimensional stagnation-point flow of an electrically conducting power-law fluid over a stretching surface is investigated when the surface is stretched in its own plane with a velocity proportional to the distance from the stagnation-point. We have discussed the uniqueness of the solution except when the ratio of free stream velocity and stretching velocity is equal to 1. The effect of magnetic field on the flow characteristic is explored numerically and it is concluded that the velocity at a point decreases/increases with increase in the magnetic field when the free stream velocity is less/greater than the stretching velocity. It is further observed that for a given value of magnetic parameter M, the dimensionless shear stress coefficient |F(0)| increases with increase in power-law index n when the value of the ratio of free stream velocity and stretching velocity is close to 1 but not equal to 1. But when the value of this ratio further differs from 1, the variation of |F(0)| with n is non-monotonic.  相似文献   

14.
15.
The present work investigates the micropolar fluid flow due to a permeable stretching sheet and the resulting heat transfer. Unlike the existing numerical works on the flow phenomenon in the literature, the prime interest here is to analytically work out shape of the solutions and identify whether they are unique. Indeed, unique solutions are detected and presented in the exact formulas for the associated boundary layer equations. Temperature field influenced by the microrotation is also mathematically resolved in the cases of constant wall temperature, constant heat flux and Newtonian heating. To discover the salient physical features of many mechanisms acting on the considered problem, it is adequate to have the analytical velocity and temperature fields and also closed-form skin friction/couple stress/heat transfer coefficients, all as given in the current paper. For instance, the practically significant rate of heat transfer is represented by a single formula valid for all three temperature cases.  相似文献   

16.
17.
The solution to the unsteady mixed convection boundary layer flow and heat transfer problem due to a stretching vertical surface is presented in this paper. The unsteadiness in the flow and temperature fields is caused by the time-dependent of the stretching velocity and the surface temperature. The governing partial differential equations with three independent variables are first transformed into ordinary differential equations, before they are solved numerically by a finite-difference scheme. The effects of the unsteadiness parameter, buoyancy parameter and Prandtl number on the flow and heat transfer characteristics are thoroughly examined. Both assisting and opposing buoyant flows are considered. It is observed that for assisting flow, the solutions exist for all values of buoyancy parameter, whereas for opposing flow, they exist only if the magnitude of the buoyancy parameter is small. Comparison with known results for steady-state flow is excellent.  相似文献   

18.
The heat transfer characteristics of the three-dimensional flow of an incompressible viscous fluid caused by stretching of an elastic sheet with uniform tension in two horizontal directions are studied subject to the following conditions; (a) the sheet is held at constant temperature; (b) the sheet is exposed to a uniform heat flux. The similarity solutions for temperature exist for both the cases. It is shown that for fixedPr, the temperature at a point decreases with increase in in Case (a) and the sheet temperature also decreases with increasing for Case (b).
Die Wärmeübertragungseigenschaften eines inkompressiblen viskosen Fluids bei der Strömung über eine dehnbare Folie
Zusammenfassung Es werden die Wärmeübertragungseigenschaften einer dreidimensionalen Strömung eines inkompressiblen viskosen Fluids, verursacht durch Dehnung einer elastischen Folie, mit gleichmäßiger Spannung in zwei horizontale Richtungen, unter Berücksichtigung folgender Bedingungen betrachtet; (a) die Folie wird bei konstanter Temperatur gehalten; (b) die Folie wird einem gleichmäßigen Wärmestrom ausgesetzt. Die Ähnlichkeitslösungen für die Temperatur existieren in beiden Fällen. Es wird gezeigt, daß im Fall (a) die Temperatur bei konstanter Prandtl-Zahl gleichzeitig mit einem anwachsenden fällt, und daß auch im Fall (b) die Folientemperatur mit wachsendem fällt.
  相似文献   

19.
The steady two-dimensional stagnation point flow of an incompressible micropolar fluid over a stretching sheet when the sheet is stretched in its own plane with a velocity proportional to the distance from the stagnation point, has been studied in this paper. The resulting equations of non-linear ordinary coupled differential equations are solved numerically using the Keller-box method. The results obtained for velocity, microrotation and skin friction are shown in tables and graphs. Comparison with the recent results of Mahapatra and Gupta {Heat Mass Transfer 38 (2002) 517} for the corresponding problem of a viscous fluid (K=0) has been done and it has been shown that the results are in excellent agreement.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号