首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Deflection of a cold supersonic NO beam seeded in He has been observed when these molecules interact with both static and a resonant oscillating electric field. The NO beam splits into two beams each one deflecting about 0.5° towards the positive and negative direction of the Stark field when the employed resonant frequency between the two Stark levels of the NO molecule is 1515 kHz. This deflection angle is about four orders of magnitude higher than the value one would expect from the NO dipole moment and the employed RF field gradient. This phenomenon suggests the possibility of a significant translational motion perpendicular to the beam axis, which is induced by the resonant RF electric field on the cold and high-density supersonic beam.  相似文献   

2.
Deflection of a cold supersonic toluene beam seeded in He has been observed when these molecules interact with both a static and a resonant oscillating electric field. The toluene beam splits into two beams each one peaking at a deflection angle of 1 degree towards the positive and negative direction of the Stark field when the employed resonant frequency between the two Stark levels of the toluene molecule is 1411 kHz. This deflection angle is about four orders of magnitude higher than the value one would expect from the toluene dipole moment and the employed RF field gradient. Different hypothesis are suggested to explain the observed strong beam splitting including the possibility of transverse beam interferences induced by both the resonant RF field and the transverse uniform electric field. A theoretical model is presented based on molecular beam interferences induced by the resonant RF field which seems to account satisfactorily for the present observations.  相似文献   

3.
We present a simple analytic approximation for evaluating the ensemble-averaged orientation or alignment of a beam of molecules subjected to a strong static or radiative field. This approximation is based on the eigenproperties which polar or polarizable molecules exhibit in the strong-field, harmonic-librator limit, and on the Boltzmann statistics of the free rotor states which adiabatically correlate with the harmonic librator states. For either the permanent or induced dipole case, the resultant formula involves just two dimensionless parameters which characterize the strength of the molecule-field interaction and the rotational temperature. The net polarization of a molecular beam thus obtained is shown to be in an excellent agreement with the exact values computed numerically from first principles. The validity range of the approximation includes the large-interaction, high temperature regions of the parameter space where first-principle calculations are onerous.  相似文献   

4.
The full three-dimensional velocity distributions of decelerated and accelerated particles in a Stark decelerator for Rydberg atoms and molecules have been measured. In the experiment, argon atoms in a supersonic beam are excited to low-field and high-field seeking Stark states with principal quantum number in the range n=15 to 25 and are decelerated in a 3 mm long decelerator consisting of four electrodes on which time-dependent voltages are applied. The time dependence of the resulting inhomogeneous electric field is chosen such that the decelerating force acting on the high-field seeking states is maximized at each point along the trajectories. The three-dimensional velocity distribution of the atoms before and after the deceleration is determined by measuring times of flight and two-dimensional images of the atomic cloud on the detector. Under optimal deceleration conditions, the decrease in kinetic energy in the longitudinal dimension amounts to 1.0×10-21 J and the increase in mean kinetic energy in the transverse dimensions is only 1.0×10-23 J. The corresponding temperatures of 100 mK and 300 mK in the two transverse dimensions are sufficiently low that trapping can be envisaged. The possibility of focusing a Rydberg atom beam is demonstrated experimentally.  相似文献   

5.
We describe the operation of a light pulse interferometer using cold 87Rb atoms in reduced gravity. Using a series of two Raman transitions induced by light pulses, we have obtained Ramsey fringes in the low gravity environment achieved during parabolic flights. With our compact apparatus, we have operated in a regime which is not accessible on ground. In the much lower gravity environment and lower vibration level of a satellite, our cold atom interferometer could measure accelerations with a sensitivity orders of magnitude better than the best ground based accelerometers and close to proven spaced-based ones.  相似文献   

6.
Experimental set-up for studying effects of a strong magnetic field on a structure and a decay dynamics of molecules, was designed and constructed. A vacuum chamber, in which a molecular beam propagated, was mounted in a bore of a superconducting magnet. Laser light crossed the molecular beam in the magnetic field and excited the molecules. Fragment or parent ions produced through sequential decay processes, were extracted by an electric field parallel to the magnetic field and detected by a microchannel plate. By measuring the time-of-flight from the photo-excitation to the ion-detection, a species of ions —mass and charge state— was identified. A performance of the set-up was demonstrated using the resonance enhanced multiphoton ionization process through the X2Π-A2Σ+ transition of nitric oxide (NO) molecules. A mass resolution m/Δm ≥180±6 was obtained in the field up to 10 T. This was the first successful result demonstrating the sufficient mass resolution obtained by the time-of-flight technique in the strong magnetic field up to 10 T. Parent NO+ ions were selectively detected by the mass spectrometer and the ion current was measured as a function of the frequency of the laser light. Rotational transition lines were measured with a sufficient S/N ratio in the field up to 10 T.  相似文献   

7.
In this paper, we proposed new constructions of atom interferometers manipulated through the toroidal trap formed by the interference patterns of two co-propagation Laguerre-Gaussian (LG) beams. The coherent splitting and merging of the atomic ensemble, which is essential for the atom interferometer, is realized by the interference pattern of two LG beams. Along the beam propagation direction, a single-well trap is evolved into a double-well trap and then recombined back into a single-well trap, which can be used to form an atom interferometer.  相似文献   

8.
The transverse motion inside a Stark decelerator plays a large role in the total efficiency of deceleration. We differentiate between two separate regimes of molecule loss during the slowing process. The first mechanism involves distributed loss due to coupling of transverse and longitudinal motion, while the second is a result of the rapid decrease of the molecular velocity within the final few stages. In this work, we describe these effects and present means for overcoming them. Solutions based on modified switching time sequences with the existing decelerator geometry lead to a large gain of stable molecules in the intermediate velocity regime, but fail to address the loss at very low final velocities. We propose a new decelerator design, the quadrupole-guiding decelerator, which eliminates distributed loss due to transverse/longitudinal couplings throughout the slowing process and also exhibits gain over normal deceleration to the lowest velocities.  相似文献   

9.
We discuss the effects of experimental resolution on the analysis of nearest neighbour energy level spacings for the signatures of underlying classically chaotic electron dynamics. Through a numerical treatment we arrive at a new dimensionless resolution criterion which must be met in order that statistical studies of this kind be considered meaningful.  相似文献   

10.
We present a compact and transportable inertial sensor for precision sensing of rotations and accelerations. The sensor consists of a dual atom interferometer operated with laser-cooled 87Rb. Raman processes are employed to coherently manipulate the matter waves. We describe and characterize the experimental apparatus. A method for passing from a compact geometry to an extended interferometer with three independent atom-light interaction zones is proposed and investigated. The extended geometry will enhance the sensitivity by more than two orders of magnitude which is necessary to achieve sensitivities better than 10-8rad/s/.  相似文献   

11.
The spin-exchange collision cross-section for hydrogen atoms has been measured for the first time in the low temperature range 40–100 K by using the polarized hydrogen gas target of the HERMES experiment at DESY (Hamburg, Germany). The results agree with a previous measurement in the overlapping temperature region 80–100 K, while seem to hint an increasing behaviour with temperature in the region 50–80 K.  相似文献   

12.
We investigated here temperature dependence of Stark widths for neutral atom spectral lines in order to find a more precise method for scaling with temperature than sometimes used dependence T-1/2, which is often inadequate particularly for Stark broadening of neutral emitter lines. We found here an analytical scaling with temperature within simplified semiclassical approaches of Freudenstein and Cooper and Dimitrijević and Konjević. For analysis of the temperature dependence, lines of HeI were used.  相似文献   

13.
This paper demonstrates a detailed experimental study of our cloverleaf magnetic trap for sodium atoms. By using polarization dependent Zeeman spectroscopy of our atomic beam, passing the magnetic trap region, we have determined important trap parameters such as gradients, their curvatures and corresponding trap frequencies. Experimental findings are compared to theoretical calculations as well as complementary methods of characterizing the trap.  相似文献   

14.
Using an atom interferometer, we have measured the static electric polarizability of 7Li α=(24.33 ±0.16)×10-30 m3 = 164.2±1.1 atomic units with a 0.66% uncertainty. Our experiment, which is similar to an experiment done on sodium in 1995 by Pritchard and co-workers, consists in applying an electric field on one of the two interfering beams and measuring the resulting phase-shift. With respect to Pritchard's experiment, we have made several improvements which are described in detail in this paper: the capacitor design is such that the electric field can be calculated analytically; the phase sensitivity of our interferometer is substantially better, near 16 mrad/ ; finally our interferometer is species selective so that impurities present in our atomic beam (other alkali atoms or lithium dimers) do not perturb our measurement. The extreme sensitivity of atom interferometry is well illustrated by our experiment: our measurement amounts to measuring a slight increase Δv of the atom velocity v when it enters the electric field region and our present sensitivity is sufficient to detect a variation Δv/v ≈6 ×10-13.  相似文献   

15.
We develop the potential scattering of a spinor within the context of perturbation field theory. As an application, we reproduce, up to second order in the potential, the diffusion results for a potential barrier of quantum mechanics. An immediate consequence is a simple generalization to arbitrary potential forms, a feature not possible in quantum mechanics.  相似文献   

16.
We present a new evaluation of an 87Sr optical lattice clock using spin polarized atoms. The frequency of the 1S03P0 clock transition is found to be 429 228 004 229 873.6 Hz with a fractional uncertainty of 2.6×10-15, a value that is comparable to the frequency difference between the various primary standards throughout the world. This measurement is in excellent agreement with a previous one of similar accuracy [Phys. Rev. Lett. 98, 083002 (2007)].  相似文献   

17.
We discuss a strongly entangled two-particle state of motion that emerges naturally from the double-pulse dissociation of a diatomic molecule. This state, which may be called dissociation-time entangled, permits the unambiguous demonstration of nonclassical correlations by violating a Bell inequality based on switched single-particle interferometry and only position measurements. We apply time-dependent scattering theory to determine the detrimental effect of dispersion. The proposed setup brings into reach the possibility of establishing nonclassical correlations with respect to system properties that are truly macroscopically distinct.  相似文献   

18.
The results of the modern relativistic Dirac-Brueckner calculations of nuclear matter are parametrized in terms of the relativistic- mean-field theory with scalar and vector nonlinear selfinteractions. It is shown that the inclusion of the isoscalar vector-meson quartic selfinteraction is essential for obtaining a proper density dependence of the vector potential in the mean-field model. The obtained mean-field parameters represent a simple parametrization of effective interaction in nuclear matter. This interaction may be used in the mean-field studies of the structure of finite nuclei without the introduction of additional free parameters.This work was supported in part by the Grant Agency of the Slovak Academy of Sciences under Grant No. GA SAV-517/1991.  相似文献   

19.
All the bright optical lattices studied so far have been designed to obtain a circularly polarized light at the bottom of the optical potential wells. This condition minimizes the departure rate of the atoms from the fundamental adiabatic surface and permits an oscillating regime in a large range of parameters. We present here an experimental study of cesium atoms in a three-dimensional optical lattice, where the light is linearly polarized at the bottom of the potential wells. Temperature measurements and pump-probe spectroscopy give similar results for this lattice and for the conventional lin lin lattice (which have circular polarizations at the bottom of the wells) despite the fact that one lattice operates in the jumping regime and the other in the oscillating regime. We study the behaviour of the two types of lattices in a longitudinal magnetic field, with particular emphasis on the zero field and strong field regimes. The strong field situation is very simple because the eigenstates are then almost pure Zeeman substates and the adiabatic and diabatic potential surfaces are identical. The comparison between the zero-field and the high-field situations shows that the diabatic potentials are more appropriate to account for experimental observations in the novel lattice. Received: 9 October 1997 / Accepted: 6 November 1997  相似文献   

20.
We have performed two-photon photoassociation experiments in atomic Bose–Einstein condensate (BEC) of 87Rb with spin degree of freedom which is created by all-optical method with CO2 lasers. The spinor character of the molecules has been revealed by the photoassociation spectrum with a new structure. The hyperfine structure of the molecules near the dissociation limit is identified by observations of the Zeeman and AC-Stark effects of the molecules. The molecules have been spin-selectively probed by the use of the light shift. This result would open the new possibility of research on novel spinor molecular BEC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号