首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microcrystalline cellulose has applications in food, pharmaceuticals, and other industries. Most microcrystalline cellulose (MCC) is produced from dissolving pulp using concentrated acids. We investigated steam explosion treatment of corn cobs and cotton gin waste for the production of microcrystalline cellulose. The corn cob was converted into a coarse brown powder after steam explosion and the lignin and residual hemicellulose fractions were extracted respectively with sodium hydroxide solution and water. The residual cellulose was readily bleached with hydrogen peroxide and converted to microcrystalline cellulose using hydrochloric acid, sulfuric acid and cellulase enzyme preparation. The resulting microcrystalline cellulose samples had properties that were similar to commercial microcrystalline cellulose. Similarly, cotton gin waste was steam exploded and converted into microcrystalline cellulose, but this material was more difficult to bleach using hydrogen peroxide. The degree of polymerization for the MCC samples ranged from 188.6 to 549.8 compared to 427.4 for Avicel PH101 MCC.  相似文献   

2.
The focus of this study has been to isolate cellulose microfibril aggregates by the one-time grinding treatment from wood, rice straw and potato tuber, and to compare their morphological and mechanical properties. Field emission scanning electron microscopy images showed that the diameter range of isolated microfibril aggregates from wood, 12–20 nm, was smaller than those from rice straw and potato tuber, 12–35 nm and 12–55 nm, respectively. These differences were observed even in the purified rice straws and potato tuber before the grinder treatment, but were hardly observed in the purified wood. The results of X-ray analysis and tensile tests indicated that there were no significant differences among the sources in the cellulose crystallinity and Young’s modulus of the isolated microfibril aggregates in the dry state. These results suggest that the inherent characteristics of cellulose microfibril aggregates in the dry state are very similar regardless of plant sources and tissue functions.  相似文献   

3.
The purpose of this study is to investigate the effect of repeated moisture change on the crystallinity and crystal size of cellulose microfibrils (CMF) in sugi (Cryptomeria japonica D.Don) and karamatsu (Larix kaempferi Gord.) wood cell wall. Based on obtained results, we discussed the qualitative change in the fine structure of CMF caused by repeated dry-and-wet (RDW) treatments. Green quarter-sawn specimens (5 × 16 × 15 mm in thickness × length × width) and microcrystalline cellulose powder (Avicel) were prepared, and these specimens were subjected to 7 times at most of heated or unheated RDW treatments. After giving RDW treatments, specimens were seasoned to the fiber saturated point and absolutely dried. Wide angle X-ray diffraction measurements were adopted to determine the crystallinity and the crystal size in each condition. Results indicate that crystallinity and crystal size in wood specimens gradually increased with the progress of heated or unheated RDW treatments, while no such increases were observed in Avicel powder. Those results suggest that RDW treatments promote the crystallization of CMF in wood cell wall, regardless of heating. We presume that noncrystalline cellulose forms hydrogen bonding with the cellulose at the surface of crystalline region with the progress of RDW treatments, thus enlarging the crystal size. Avicel powder did not show features that were observed in wood specimens by RDW treatments, because it contained few noncrystalline cellulose.  相似文献   

4.
A detailed physico-chemical characterisation of potential new cellulose sources (rice husk, hemp stalk, and coniferous needles), and microcrystalline cellulose (MCC) manufactured from them, was made in this work. The length and the width of the cellulose crystallites were determined by wide-angle X-ray scattering (WAXS), crystallinities were studied by means of WAXS and solid state cross polarisation magic angle spinning 13C nuclear magnetic resonance (NMR) spectroscopy, and the packing and the cross-sectional shape of the microfibrils were determined by small-angle X-ray scattering. When MCC was prepared from rice husks and hemp stalks an acceptable yield was obtained. Crystallinities obtained with solid state NMR spectroscopy and WAXS were highest for MCC prepared from hemp stalks, and lowest for rice husk MCC. The crystallite sizes of MCC samples studied in this work varied more than in those MCC samples which were prepared from conventional plant sources, and crystallite size and cellulose crystallinity were related. When taking into account rather high values of specific surface, hemp stalks and rice husks appear as a promising raw materials for MCC production.  相似文献   

5.
Abstract

The preparation, structure, and properties of microcrystalline cellulose (MCC) from rice straw were investigated by IR, x-ray, viscometry, polarizing microscope, SEM, etc. The results are as follows:

1. The leveling-off degree of polymerization (LODP) obtained from rice straw is about 80–150. The dimensions of MCC granules are 20–30 μm length, 0.5–0.8 μm thick, and the crystallinity is about 80%.

2. The aqueous suspension of a certain concentration of MCC can form a gel under the effect of shear force. The viscosity of MCC gel increased with an increasing content of MCC in water. A sharper increase of viscosity occurred in the 3–6% range.

3. The addition of one or two valence salts into the MCC gel increased the viscosity.

4. The viscosity of MCC gel has its maximum value at pH 8.

5. The MCC gel as an emulsifying agent can form a stable emulsion in the oil/water system when the ratio of oil/water is below 6/4.  相似文献   

6.
Microcrystalline cellulose (MCC), prepared from natural cellulose through acid hydrolysis, has been widely used in the food, chemical and pharmaceutical industries because of its high degree of crystallinity, small particle size and other characteristics. Being different from conventional mineral acids, phosphotungstic acid (H3PW12O40, HPW) was explored for hydrolyzing cellulose selectively for the preparation of MCC in this study. Various reaction parameters, such as the acid concentration, reaction time, temperature and solid-liquid ratio, were optimized. Rod-like MCC was obtained with a high yield of 93.62 % and also exhibited higher crystallinity and narrower particle diameter distribution (76.37 %, 13.77–26.17 μm) compared with the raw material (56.47 %, 32.41–49.74 μm) at 90 °C for 2 h with 58 % (w/w) HPW catalyst and a solid-liquid radio of 1:40. Furthermore, HPW can easily be extracted and recycled with diethyl ether for four runs without affecting the quality of the MCC products. The technology of protecting the crystalline region while selectively hydrolyzing the amorphous region of cellulose as much as possible by using HPW is of great significance. Due to the strong Brønsted acid sites and highest activity in solid heteropoly acid, the use of effective homogeneous HPW may offer an eco-friendly and sustainable way to selectively convert fiber resources into chemicals in the future.  相似文献   

7.
Thermal decomposition of cellulose has been widely studied for the past several years. It has been reported that the source of cellulose and its composition greatly affect its pyrolysis. One of the most widely used analytical tools for the study of cellulose pyrolysis is thermogravimetric (TG) analysis. Several model-fitting methods have been employed to study cellulose pyrolysis kinetics. An alternative to the model-fitting approach is the so-called model-free method developed by Vyazovkin. This isoconversional technique calculates the activation energy as a function of the degree of the conversion. In this article, the pyrolysis of cellulose in cotton fibers compared to microcrystalline cellulose (Avicel, PH 105) was investigated. TG curves were acquired as a function of the heating rates (4, 5, 8, 10, and 16 °C min?1) and the model-free method was used to analyze the data. Activation energies of cotton fibers and Avicel were obtained, and compared to the data reported in the literature. In addition, models for isothermal decomposition were calculated and compared with experimental data at the same temperature.  相似文献   

8.
Pretreatment-induced structural alteration is critical in influencing the rate and extent of enzymatic saccharification of lignocellulosic biomass. The present work has investigated structural features of rice straw pretreated by hot-compressed water (HCW) from 140 to 240 °C for 10 or 30 min and enzymatic hydrolysis profiles of pretreated rice straw. Compositional profiles of pretreated rice straw were examined to offer the basis for structural changes. The wide-angle X-ray diffraction analysis revealed possible modification in crystalline microstructure of cellulose and the severity-dependent variation of crystallinity. The specific surface area (SSA) of pretreated samples was able to achieve more than 10-fold of that of the raw material and was in linear relationship with the removal of acetyl groups and xylan. The glucose yield by enzymatic hydrolysis of pretreated materials correlated linearly with the SSA increase and the dissolution of acetyl and xylan. A quantitatively intrinsic relationship was suggested to exist between enzymatic hydrolysis and the extraction of hemicellulose components in hydrothermally treated rice straw, and SSA was considered one important structural parameter signaling the efficiency of enzymatic digestibility in HCW-treated materials in which hemicellulose removal and lignin redistribution happened.  相似文献   

9.
In this study we employed Size Exclusion Chromatography (SEC) and X-ray diffraction to monitor the molecular weight and crystallinity of bacterial cellulose I and II (BC-I, BC-II) and microcrystalline cellulose (MCC) digested with three “pure” Thermobifida fusca cellulases (Cel6A, Cel6B, and Cel9A ). For each enzyme, cellulose crystallinity was found to increase modestly with treatment time. The digestion rate of BC-II was higher than that of BC-I for Cel6A and Cel9A, both endocellulases. SEC results show that the endocellulases create a very rapid decrease in cellulose molecular weight while a slower molecular weight loss was observed with Cel6B, an exocellulase. This work suggests that conversion of native cellulose I to cellulose II by mercerization may beneficially impact the rate of sugar release by cellulases from biomass. In general, lower conversion rates are observed for MCC compared to BC, possibly due to a higher initial crystallinity for MCC. Surface area effects may also be important.  相似文献   

10.
11.
Cellulose hydrolysis using zinc chloride as a solvent and catalyst   总被引:1,自引:0,他引:1  
Cellulose gel with < 10% of crystallinity was prepared by treatment of microcrystalline cellulose, Avicel, with zinc chloride solution at a ratio of zinc chloride to cellulose from 1.5 to 18 (w/w). The presence of zinc ions in the cellulose gels enhanced the rate of hydrolysis and glucose yield. The evidence obtained from X-ray diffraction, iodine absorption experiments; and Nuclear Magnetic Resonance spectra analysis suggested the presence of zinc-cellulose complex after Avicel was treated with zinc chloride. Zinc-cellulose complex was more susceptible to hydrolysis than amorphous cellulose. Under the experimental condition, cellulose gels with zinc ions were hyrolyzed to glucose with 95% theoretical yield and a concentration of 14% (w/v) by cellulases within 20 h. The same gel was hydrolyzed by acid to glucose with 91.5% yield and a concentration of 13.4% (w/v).  相似文献   

12.
Microcrystalline cellulose (MCC) particles are mostly prepared by acid hydrolysis of various agro sources. Acid hydrolysis is usually carried out with high concentration (64 wt%) of sulfuric acid. Here, an attempt has been made to optimize lower acid concentrations which can effectively produce MCC particles. In this work, different concentrations of sulfuric acid (20, 30, 35, 40, 47 and 64 wt%) have been used to prepare MCC particles, which have been characterized by XRD, particle size analysis, scanning electron microscopy, transmission electron microscopy, nanoindentation and thermogravimetric analysis. MCC prepared with 35 and 47% sulfuric acid (MCC 35 and MCC 47) had finest particle size and fibrils were produced in the range of 15–25 nm. MCC 20 showed wide particle size distribution, indicating low breakdown of the cellulose chains. The energy absorption behavior and mechanical properties of the MCC pellets were determined by nanoindentation test for the first time. MCC 35 pellets exhibited lowest modulus and hardness.  相似文献   

13.
The cellulose hydrolysis kinetics during batch enzymatic saccharification are typified by a rapid initial rate that subsequently decays, resulting in incomplete conversion. Previous studies suggest that changes associated with the solution, substrate, or enzymes may be responsible. In this work, kinetic experiments were conducted to determine the relative magnitude of these effects. Pretreated corn stover (PCS) was used as a lignocellulosic substrate likely to be found in a commercial saccharification process, while Avicel and Kraft lignin were used to create model substrates. Glucose inhibition was observed by spiking the reaction slurry with glucose during initial-rate experiments. Increasing the glucose concentration from 7 to 48 g/L reduced the cellulose conversion rate by 94%. When product sugars were removed using ultrafiltration with a 10 kDa membrane, the glucose-based conversion increased by 9.5%. Reductions in substrate reactivity with conversion were compared directly by saccharifying PCS and Avicel substrates that had been pre-reacted to different conversions. Reaction of substrate with a pre-conversion of 40% resulted in about 40% reduction in the initial rate of saccharification, relative to fresh substrate with identical cellulose concentration. Overall, glucose inhibition and reduced substrate reactivity appear to be dominant factors, whereas minimal reductions of enzyme activity were observed.  相似文献   

14.
During the pretreatment of lignocellulosic materials, the dissolved mannan would re-adsorb on cellulose, and then inhibited the cellulose hydrolysis by cellulases. However, the adsorption of mannan on cellulose and hydrolyzability of mannan adsorbed on cellulose were not so clear. In this work, the adsorption behavior of mannans on cellulose and the hydrolysis of adsorbed mannan by mannanase were investigated. Adsorption of 1, 4-β-D-mannan (mannan), Konjac glucomannan (GM), and Carob galactomannan (GalM) on Avicel and corn stover (CS) was increased with mannan loading. The adsorbed amount of mannan (94.4 mg/g Avicel and 85.1 mg/g CS) on cellulosic substrates at the mannan concentration of 5 mg/mL was significantly higher (p < 0.05) than that of GM (65.7 mg/g Avicel and 63.7 mg/g CS) and GalM (44.3 mg/g Avicel and 48.7 mg/g CS). Furthermore, the NMR spectra and molecular weight analysis showed that mannan with less side groups and low molecular weight might increase the adsorption. Mannan, GM, and GalM adsorbed on Avicel and CS, which was used as Avicel/CS -mannan/GM/GalM complex, could be hydrolyzed by mannanase, and the hydrolyzability of Avicel-mannan/GalM complexes was stronger than that of Avicel-GM complex. Similarly, the reducing sugars increased by 23.2 and 54.2 % for Avicel-mannan and Avicel-GalM complexes after 48 h hydrolysis by cellulase and mannanase, respectively. The results suggested that the addition of mannanase could hydrolyze the mannan adsorbed on cellulose and potentially improved hydrolysis efficiency of cellulose in lignocelluloses. Additionally, the mannanase supplementation could be extended to the removal of mannan on pulp by mannanase and finally affecting the dissolving pulps and paper quality.  相似文献   

15.
Different inoculum sources and acclimatization methods result in different substrate adaptation and biodegradability. To increase straw degradation rate, shorten the digester start-up time, and enhance the biogas production, we domesticated anaerobic sludge by adding microcrystalline cellulose (MCC). During acclimatization, the start-up strategies and reactor performance were investigated to analyze changes in feedstock adaption, biodegradability, and methanogen activity. The effect of the domesticated inoculum was evaluated by testing batch un-pretreated corn stover with a dewatered sludge (DS)-domesticated inoculum as a control. The results showed that (1) using MCC as a substrate rapidly improved microorganism biodegradability and adaptation. (2) MCC as domesticated substrate has relatively stable system and high mass conversion, but with low buffer capacity. (3) Macro- and micronutrients should be added for improving the activity of methanogenic and system’s buffer capacity. (4) Using the domesticated inoculums and batch tests to anaerobically digest untreated corn stover yielded rapid biogas production of 292 mL, with an early peak value on the first day. The results indicated that cultivating directional inoculum can efficiently and quickly start-up digester. These investigated results to promote anaerobic digestion of straw for producing biogas speed up the transformation of achievements of biomass solid waste utilization have a positive promoting significance.  相似文献   

16.
Five pulping methods using different reagents were used for the delignification of almond shells: sodium hydroxide 7.5 % v/v for 24 h at 60 °C, potassium hydroxide 7.5 % v/v for 24 h at 60 °C, formic acid/water 90/10 v/v, organosolv with ethanol/water 60/40 v/v and sodium hydroxide 15 % v/v in an autoclave for 90 min at 120 °C. The resulting cellulose pulps were evaluated using TAPPI standard methods and X-ray diffraction (XRD) to determine the lignin content and crystallinity changes. After pulping, fibers were bleached with sodium chlorite and hydrogen peroxide to obtain pure cellulose. The resulting pulps were characterized by XRD and thermogravimetry to determine the cellulose purification rates and changes in crystallinity. Then, the different pulps were acetylated, hydrolyzed and homogenized to obtain cellulose nanofibers. Nanofiber sizes were assessed by atomic force microscopy and XRD to evaluate the effect of hydrolysis on nanofibers. Finally, nanopaper sheets were produced and the properties were compared to conventional micropaper. The different treatments influenced the amount of lignin eliminated, which had a direct relationship on the subsequent bleaching treatments to obtain pure cellulose. Hence, the different chemical methods influenced the crystallinity of the fibers which also influenced the yield of cellulose nanofibers and different nanopapers.  相似文献   

17.
Atomic force microscopy in liquid environments (L-AFM) became a state of the art technique in the field of enzymatic cellulose degradation due to its capability of in situ investigations on enzymatic relevant scales. Current investigations are however limited to few substrates like valonia cellulose, cotton linters and processed amorphous cellulose as only these show required flatness and purity. Structurally monophasic, these substrates confine conclusions regarding enzymatic degradation of mixed amorphous–crystalline substrates as commonly found in nature. To exploit the full potential of the technique, cellulose substrates with multiphase properties, flat topology and purity are therefore absolutely required. In this study we introduce a special preparation route based on highly crystalline Avicel PH101® cellulose and the ionic liquid 1-butyl-3-methylimmidazolium chloride as dissolution reagent. As comprehensively shown by atomic force microscopy, wide angle X-ray scattering, Raman spectroscopy and electron microscopy, the developed material allows precise control of its polymorphic composition by means of cellulose types I and II embedded in an amorphous matrix. Together with the tunable composition and flat topology over large areas (>10 × 10 µm2) the material is highly suited for L-AFM studies.  相似文献   

18.
Many tonnes of agricultural wastes are generated annually, which contains a relatively high amount of cellulose; banana pseudo-stem is one waste type that is a promising material for nanocellulose production. This research characterised nanocellulose from inner and outer layers of banana pseudo-stem as a preliminary research strategy for designing biodegradable packaging material from banana pseudo-stem nanocellulose. Nanocellulose was successfully prepared through TEMPO (2,2,6,6-tetramethylpiperidine 1-oxyl)-mediated oxidation. The extracted nanocellulose from both the inner and outer layers had observed widths of approximately 7–35 nm and long fibrillated fibre. They had high negative zeta potential (lower than ?33.6) that provided good colloidal stability. The purity of the nanocellulose was high as demonstrated by 13C solid-state NMR and Fourier transform infrared spectroscopy. Nanocellulose from both layers was significantly more crystalline than the raw materials. Thermal stability of nanocellulose sourced from inner and outer layers was relatively similar, with degradation temperature of approximately 220 °C, which was slightly lower than the degradation temperature of its native form (232 °C for inner layer and 261 °C for outer layer).  相似文献   

19.
The enzymatic digestibility of ammonia fiber explosion (AFEX)-treated rice straw was modeled by statistically correlating the variability of samples to differences in treatment using several different analytical techniques. Lignin content and crystallinity index of cellulose affect enzymatic hydrolysis the most. X-ray diffraction was used to measure the crystallinity index (CrI), while fluorescence and diffuse reflectance infrared (DRIFT) spectroscopy measured the lignin content of the samples. Multivariate analysis was applied to correlate the enzymatic hydrolysis results of the various samples with X-ray diffraction and spectroscopic data. Principal component analysis (PCA) and multilinear regression (MLR) techniques did not accurately predict the digestibility of the rice straw samples. The best correlation (R value of 0.775) was found between the treatment conditions of the AFEX process and the concentration of xylose at 24 h after enzymatic hydrolysis.  相似文献   

20.
Optimization of cultural conditions for enhanced cellulase production by Aspergillus niger NS-2 were studied under solid-state fermentation. Significant increase in yields (CMCase 463.9?±?20.1 U/g, FPase 101.1?±?3.5 U/g and β-glucosidase 99?±?4.0 U/g) were obtained under optimized conditions. Effect of different nutritional parameters was studied to induce the maximum production of cellulase complex. Scale-up studies for enzyme production process were carried out. Characterization studies showed that enzymes produced by A. niger NS-2 were highly temperature- and pH stable. At 50 °C, the half life for CMCase, FPase, β-glucosidase were approximately 240 h. Cellulases from A. niger NS-2 were stable at 35 °C for 24 h over a broader pH range of 3.0–9.0. We examined the feasibility of using steam pretreatment to increase the saccharification yields from various lignocellulosic residues for sugar release which can potentially be used in bioethanol production. Saccharification of pretreated dry potato peels, carrot peels, composite waste mixture, orange peels, onion peels, banana peels, pineapple peels by crude enzyme extract from A. niger NS-2, resulted in very high cellulose conversion efficiencies of 92–98 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号