首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conclusions The hydrogenolysis and hydrolysis of lignin in an aqueous alkaline medium must be considered as an oxidative degradation of the lignin macromolecule by hydroxyl radicals. This process takes place even in a reducing medium in the presence of a catalyst. This was shown by a study of the hydrogenolysis process using model compounds. The oxidative processes in lignin are connected with the appearance in the system (lignin or its model) of alkali-induced quinoid structures which, being electron-acceptors, abstract electrons from hydroxyl ions and form hydroxyl radicals. The latter lead to oxidative processes through the the hydroxylation of the system. The correctness of this has been confirmed by studying the composition of the products, which shows the oxidative nature of the hydrogenolysis process.Scientific-Research Institute for the Chemistry and Technology of Cotton Cellulose, Tashkent. Translated from Khimiya Prirodnykh Soedinenii, No. 5, pp. 512–517, September–October, 1970.  相似文献   

2.
Pretreatment of Douglas-fir by steam explosion produces a substrate containing approx 43% lignin. Two strategies were investigated for reducing the effect of this residual lignin on enzymatic hydrolysis of cellulose: mild alkali extraction and protein addition. Extraction with cold 1% NaOH reduced the lignin content by only approx 7%, but cellulose to glucose conversion was enhanced by about 30%. Before alkali extraction, addition of exogenous protein resulted in a significant improvement in cellulose hydrolysis, but this protein effect was substantially diminished after alkali treatment. Lignin appears to reduce cellulose hydrolysis by two distinct mechanisms: by forming a physical barrier that prevents enzyme access and by non-productively binding cellulolytic enzymes. Cold alkali appears to selectively remove a fraction of lignin from steam-exploded Douglas-fir with high affinity for protein. Corresponding data for mixed softwood pretreated by organosolv extraction indicates that the relative importance of the two mechanisms by which residual lignin affects hydrolysis is different according to the pre- and post-treatment method used.  相似文献   

3.
Chemistry of Natural Compounds - The hydrogenolysis and hydrolysis of lignin in an aqueous alkaline medium must be considered as an oxidative degradation of the lignin macromolecule by hydroxyl...  相似文献   

4.
Spectroscopic characterization of both untreated and treated material is being performed in order to determine changes in the biomass and the effects of pretreatment on crystallinity, lignin content, selected chemical bonds, and depolymerization of hemicellulose and lignin. The methods used are X-ray diffraction for determination of cellulose crystallinity (CrI); diffusive reflectance infrared (DRIFT) for changes in C-C and C-O bonds; and fluorescence to determine lignin content. Changes in spectral characteristics and crystallinity are statistically correlated with enzymatic hydrolysis results to identify and better understand the fundamental features of biomass that govern its enzymatic conversion to monomeric sugars. Models of the hydrolysis initial rate and 72 h extent of conversion were developed and evaluated. Results show that the hydrolysis initial rate is most influenced by the cellulose crystallinity, while lignin content most influences the extent of hydrolysis at 72 h. However, it should be noted that in this study only crystallinity, lignin, and selected chemical bonds were used as inputs to the models. The incorporation of additional parameters that affect the hydrolysis, like pore volume and size and surface area accessibility, would improve the predictive capability of the models.  相似文献   

5.
The effect of fiber drying on the properties of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) produced using concentrated maleic acid hydrolysis of a never dried unbleached mixed hardwood kraft pulp was evaluated. Two drying conditions, i.e., air drying and heat drying at 105 °C were employed. It was found that drying (both air and heat) enhanced acid hydrolysis to result in slightly improved LCNC yields and less entangled LCNF. This is perhaps due to the fact that drying modified the cellulose supermolecular structure to become more susceptible to acid hydrolysis and the enhanced hydrolysis severity at the fiber surface when using dried fibers. Drying substantially improved LCNC crystallinity and LCNF suspension viscoelastic behavior. The present study quantitatively elucidated the effect of pulp drying (either air or heat) on producing cellulose nanomaterials and has practical importance because commercial market pulp (heat dried) is most likely to be used commercially.  相似文献   

6.
Oxidation of hydrolysis lignin with hydrogen peroxide in acid solutions   总被引:1,自引:0,他引:1  
Optimal conditions were determined for oxidation of hydrolysis lignin and other insoluble lignin samples with hydrogen peroxide in acid solutions, ensuring solubility of lignin in dilute alkali. The correlation was found between the functionalization and solubility of hydrolysis lignin and its oxidation products. A procedure was suggested for determining carboxy groups in lignin.  相似文献   

7.
Inhibitory efficacy has been determined by the method of the weight losses of steel in acid with native lignin, hydrolysis lignin, ammoniated native lignin, chlorinated hydrolysis lignin, and ammoniated hydrolysis lignin, and without these additives. It has been established that the efficacy of lignin and its modifications as inhibitors of acid corrosion increases with a rise in the number of carboxy groups in the macromolecule, and therefore the ammoniated hydrolysis lignin is the most effective.Central Scientific-Research and Planning Technological Institute for the Mechanization and Electrification of Animal Husbandry of the Southern Zone of the USSR. Zaporozh'e Astrakhan Technical Institute of the Fisheries Industry and Economy, Astrakhan'. Translated from Khimiya Prirodnykh Soedinenii, No. 3, pp. 378–380, May–June, 1983.  相似文献   

8.
Historical or archaeological wooden objects are generally better conserved in wet environments than in other contexts. Nevertheless, anaerobic erosion bacteria can slowly degrade waterlogged wood, causing a loss of cellulose and hemicellulose and leading to the formation of water-filled cavities. During this process, lignin can also be altered. The result is a porous and fragile structure, poor in polysaccharides and mainly composed of residual lignin, which can easily collapse during drying and needs specific consolidation treatments. For this reason, the chemical characterization of archaeological lignin is of primary importance in the diagnosis and conservation of waterlogged wood artifacts. Current knowledge of the lignin degradation processes in historical and archaeological wood is extremely inadequate. In this study lignin extracted from archaeological waterlogged wood was examined using both Py-GC/MS, NMR spectroscopy and GPC analysis. The samples were collected from the Site of the Ancient Ships of San Rossore (Pisa, Italy), where since 1998 31 shipwrecks, dating from 2nd century BC to 5th century AD, have been discovered. The results, integrated by GPC analysis, highlight the depolymerization of lignin with cleavage of ether bonds, leading to an higher amount of free phenol units in the lignin from archaeological waterlogged wood, compared to sound lignin from reference wood of the same species.  相似文献   

9.
Kraft lignin gels have been found to exhibit both macrosyneresis and hysteresis in swelling. The effects of temperature and prehistory on swelling and on the mechanical properties have been investigated. Thermal treatment of kraft lignin gels in the protonised state induces an irreversible deswelling of the gels. This irreversible deswelling can, however, be released by deprotonization of the carboxyl groups. Deswelling also occurs when partly dried protonised gels are placed in water again. Furthermore, the gels were found to exhibit pH-hysteresis.It is concluded that the above-mentioned effects are closely related to the state of dissociation of the carboxylic groups and to their ability to form intermolecular hydrogen bonds in the network structure.It is suggested that syneresis is due to a structural rearrangement induced by breaking and formation of hydrogen bonds and promoted by the long-range van der Waal's interaction between the colloidal units in the gel. Swelling hysteresis is assumed to be related to repeptization phenomena commonly encountered in lyophobic colloids.  相似文献   

10.
Time profiles of evolution rates of gas and tar in steam gasification of model biomass samples were examined using a continuous cross-flow moving bed type differential reactor to elucidate the interaction of the major biomass components (cellulose, xylan, lignin) during gas and tar evolution. Two types of model biomass samples (sample A: mixture of cellulose (65 wt%) and lignin (35 wt%); sample B: mixture of cellulose (50 wt%), xylan (23 wt%), and lignin (27 wt%)) were used for the experiment. In steam gasification of sample A, the evolutions of water-soluble tar and gaseous products (CO, H2, CH4 and C2H4) are significantly suppressed by the interaction between cellulose and lignin. The primary (initial) decomposition of lignin is hindered by the interaction with pyrolysate of cellulose. Then, the CO2 evolution appreciably enhanced and the evolution of water-soluble tar delays. These results may imply that the volatilization of water-soluble tar derived from cellulose is suppressed by lignin and then the decomposition of char derived from polymerized saccharides and lignin takes place, emitting mainly CO2. From the results using sample B, it was found that the addition of xylan greatly enhances the evolutions of gases (CO2, CO, CH4 and H2) and accelerates the evolution of water-soluble tar and CO2, implying that the enhancement of decomposition of water-soluble tar into gases and/or xylan decomposes into gases without significant interaction with cellulose or lignin. In addition, yields of the major tar components (levoglucosan, furfural and 5-methylfurfural) were measured using HPLC. It was observed that the interaction among cellulose, xylan and lignin suppresses the evolution of levoglucosan and significantly increases the evolution rate of 5-methylfurfural. There is an insignificant influence of interaction among cellulose, xylan and lignin for furfural evolution.  相似文献   

11.
Thermal behavior of lignin and cellulose from waste composting process   总被引:2,自引:0,他引:2  
The lignin and cellulose were extracted from reference material (leaves and twigs) and food of compost at different times composting: zero (raw), 30, and 120 days. According to thermogravimetric analysis and its derivative and differential scanning calorimetry curves for these samples, were verified during composting process there were considerable changes in its thermal profiles, as well as, characteristics lignin in cellulose samples and cellulose in lignin samples. These features were found by fourier transformed infrared spectroscopy.  相似文献   

12.
Cellulose may be readily converted into ethers involving primary and secondary alcohol groups in each monomer unit and the glycosidic bonds. However, these reactions are rather more complicated than with simple substances, because the stereochemistry of the cellulose molecule is such that the vast majority of its hydroxyl groups form intra-chain hydrogen bonds or inter-chain hydrogen bonds with contiguous molecules. Carboxymethylcellulose (CMC) has played an important part in the commercial uses of cellulose derivatives. CMC becomes alkali and water soluble. The polarity can, in fact, be increased by introduction of ionizing groups, ie carboxymethyl group. CMC is generally produced by the reaction of alkali cellulose with chloroacetic acid.  相似文献   

13.
This study focused on the effect of hemicellulose and lignin on enzymatic hydrolysis of dairy manure and hydrolysis process optimization to improve sugar yield. It was found that hemicellulose and lignin in dairy manure, similar to their role in other lignocellulosic material, were major resistive factors to enzymatic hydrolysis and that the removal of either of them, or for best performance, both of them, improved the enzymatic hydrolysis of manure cellulose. This result combined with scanning electron microscope (SEM) pictures further proved that the accessibility of cellulose to cellulase was the most important feature to the hydrolysis. Quantitatively, fed-batch enzymatic hydrolysis of fiber without lignin and hemicellulose had a high glucose yield of 52% with respect to the glucose concentration of 17 g/L at a total enzyme loading of 1300 FPU/L and reaction time of 160 h, which was better than corresponding batch enzymatic hydrolysis.  相似文献   

14.
Lithium-ion batteries have been developing intensively and earn an unprecedented reputation, yet advanced performance and safety issue still require considerable investigation. Separator is vital to comprehensive properties of batteries, where the mechanical properties are key to breaking through of new-type separator. Unfortunately, electrolyte submersion has caused damage to strength of cellulose separator. Whereupon, in this work, cellulose separator is optimized by introducing lignin particles to promote electrolyte-immersed mechanical strength. Experiments are conducted concerning surface morphology, contact angle, porosity, electrolyte uptake, mechanical properties and electrochemical performance. Molecular simulation is implemented to explore the mechanism of tensile behavior of cellulose and lignin subjected to electrolyte solvents. Experimental results confirm positive effect of lignin addition in improving mechanical properties and simultaneously maintaining impressive electrochemical performance of the cellulose/lignin composites separators. Besides, lignin addition amount of 2.5% and 5% is recommended to achieve promising overall properties. Molecular simulation has successfully unveiled that weakening of cellulose separator submerged in electrolyte is resulted by the deformed cellulose amorphous region and the promoting effect of adding lignin is contributed from the new hydrogen bonds generated between cellulose and lignin molecules. Hopefully, this work provides novel insight on preparing remarkable separator and mechanism of materials behavior.  相似文献   

15.
Pyrolysis and combustion characteristics of three different oil cakes such as Pongamia(Pongamia Pinnata),Madhuca(Madhuca Indica),and Jatropha(Jatropha curcas) were investigated in this study.The cellulose and lignin contents of oil cakes play very important role in pyrolysis and combustion processes.A kinetic investigation of three oil cakes was carried out and major part of the samples decomposed between 210℃ and 500℃.Pyrolysis and combustion were carried out with the mixtures of cellulose and lignin chemi...  相似文献   

16.
Urea can improve the solubility and stability of cellulose in aqueous alkali solution, while its role has not come to a conclusion. To reveal the role of urea in solution, NMR was introduced to investigate the interaction between urea and the other components in solution. Results from chemical shifts and longitudinal relaxation times show that: (1) urea has no strong direct interaction with cellulose as well as NaOH; (2) urea does not have much influence on the structural dynamics of water. Urea may play its role through van der Waals force. It may accumulate on the cellulose hydrophobic region to prevent dissolved cellulose molecules from re-gathering. The driving force for the self-assembly of cellulose and urea molecules might be hydrophobic interaction. In the process of cellulose dissolution, OH? breaks the hydrogen bonds, Na+ hydrations stabilize the hydrophilic hydroxyl groups and urea stabilizes the hydrophobic part of cellulose.  相似文献   

17.
Lignin is considered to be responsible for a selective sorption of phenolic compounds on wood. In order to investigate the mechanisms involved, two similar guaiacol compounds--only differing by the nature of the para side chain--were adsorbed on oak wood extracted lignin. Vapor sorption-desorption isotherms indicated that about 3.5 wt % of 4-vinylguaiacol is adsorbed near saturation whereas it is only 0.8% for 4-ethylguaiacol. For both compounds, the isotherms displayed a hysteresis though significantly greater for 4-vinylguaiacol. Analyses of the hydroxyl stretching region of FTIR spectra of the lignin/4-ethylguaiacol and lignin/4-vinylguaiacol complexes indicated that physisorption via hydrogen bonds occurs for both sorbates with lignin phenolic hydroxyl groups but which would be more condensed for the former than for the latter. According to NMR spectra, these phenolic hydroxyl groups correspond to non-etherified guaiacyl subunits. In contrast with other para substituents, the conjugated vinyl bond favors not only physisorption but also chemisorption as witnessed by the fact that upon desorption in the vapor phase, even after pumping under dynamic vacuum for several days, about 1 wt % of 4-vinylguaiacol remains adsorbed onto lignin.  相似文献   

18.
The functional compositions of cottonseed husk hydrolysis lignin and its derivatives have been determined and their IR spectra have been studied. A possible formation of stronger hydrogen bonds in derivatives of hydrolysis lignin has been shown.Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent, fax (3712) 40 64 75. Translated from Khimiya Prirodnykh Soedinenii, No. 3, pp. 392–397, May–June, 1999.  相似文献   

19.
The products of base-catalyzed liquid-phase hydrolysis of lignin depend markedly on the operating conditions. By varying temperature, pressure, catalyst concentration, and residence time, the yield of monomers and oligomers from depolymerized lignin can be adjusted. It is shown that monomers of phenolic derivatives are the only primary products of base-catalyzed hydrolysis and that oligomers form as secondary products. Oligomerization and polymerization of these highly reactive products, however, limit the amount of obtainable product oil containing low-molecular-weight phenolic products. Therefore, inhibition of concurrent oligomerization and polymerization reactions during hydrothermal lignin depolymerization is important to enhance product yields. Applying boric acid as a capping agent to suppress addition and condensation reactions of initially formed products is presented as a successful approach in this direction. Combination of base-catalyzed lignin hydrolysis with addition of boric acid protecting agent shifts the product distribution to lower molecular weight compounds and increases product yields beyond 85%.  相似文献   

20.
Transforming renewable lignin into high value-added chemicals is a forward-looking strategy to address the resource waste caused by insufficient utilization of biomass resources. On this basis, studying the efficient conversion of lignin to aldehydes/acids and their reaction mechanisms has become an attractive topic. A systematic investigation of the gas-phase oxidation reaction mechanisms of the three model compounds initiated by O2 was carried out at the atomic and molecular levels by using density functional theory (DFT). Further revealing of oxidation behavior on two reaction sites of phenolic hydroxyl group and hydroxymethyl group were accomplished in detail. The potential energy surface information of 21 possible reaction channels of two pathways were obtained at B3LYP/6-311+G(d,p) level. The influence of substituent effects on the reaction energy barrier was estimated. The calculation results showed that the reactivity of phenolic hydroxyl group is stronger than that of hydroxymethyl group, because the reaction Gibbs potential barriers are lower by about 4.9–8.7 kcal/mol. The reaction energy barriers on phenolic hydroxyl group site and hydroxymethyl group site decrease with the increase of the number of methoxy groups. Revealing the oxidation processes of lignin model compounds will provide a deeper understanding on the reaction mechanism and provide theoretical support for further experimental research on the conversion of lignin into high value-added chemicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号