首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Deposition of nanoparticles on the surface of a variety of materials is a subject of great interest due to their potential applications in electronic devices, sensing, catalysis and bio-medical sciences. In this context, we have explored and compared various methodologies to generate gold and silver nanoparticles on the surface of cellulose fibers. It was found that boiling of the cellulose fibers in alkaline solution of gold and silver salts led to the formation and immobilization of gold and silver nanoparticles. However, in case of lecithin treated and thiol-modified cellulose fibers, high temperature was not essentially required for the formation and deposition of nanoparticles on cellulose substrate. In both these cases, fairly uniform metal nanoparticles were obtained in good yields (~43 wt% gold loading in case of thiol modified cellulose fibers) at room temperature. Borohydride-reduction method resulted in relatively lower loading (~22 wt%) with a wide size distribution of gold and silver nanoparticles on cellulose fibers. All these nanoparticle–cellulose composites were thoroughly characterized using scanning electron microscopy, energy dispersive X-ray, Fourier transform infrared spectroscopy, UV–visible spectroscopy, and elemental analyzer. Thiol modified cellulose–gold nanoparticle composites served as active catalysts in the reduction of 4-nitrophenol into 4-aminophenol.  相似文献   

2.
High-yield synthesis of bamboo-raft-like single-crystalline selenium superstructures has been realized for the first time via a facile solvothermal approach by reducing SeO2 with ethylene alcohol in the presence of cellulose acetate. The formation of a raftlike superstructure with various forms is strongly dependent on the temperature, amount of cellulose acetate, reaction time, and even preheating treatment. The suitable amount of cellulose acetate is essential for the formation of elegant and uniform raft Se. The morphology, microstructure, optical properties, and chemical compositions of bamboo-raft-like selenium were characterized using various techniques (X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy (TEM), high-resolution (HR) TEM, X-ray photoelectron spectroscopy, UV-vis spectroscopy, FTIR spectroscopy, and Raman spectroscopy). A possible growth mechanism has been proposed. Such special superstructures could provide a useful precursor for potential applications.  相似文献   

3.
Silver nanoparticles stabilized in a solution of sodium carboxymethyl cellulose with a degree of substitution of 0.85 and a degree of polymerization of 600 have been synthesized. The structuring; physical, chemical, and mechanical properties; and antimicrobial activities of films prepared from sodium carboxymethyl cellulose solutions containing silver nanoparticles have been studied. The shapes, quantities, and sizes of the silver nanoparticles occurring in the sodium carboxymethyl cellulose films were determined with the use of transmission electron microscopy, atomic force microscopy, and UV spectroscopy. It was found that an increase in the concentration of silver nitrate in sodium carboxymethyl cellulose solutions, as well as photoirradiation of the films, leads to the changes in the sizes and shapes of silver nanoparticles. The shapes, sizes, and quantities of silver nanoparticles determine their biological activity. An increase in the quantity of 5- to 25-nm silver nanoparticles was found to enhance the microbicidal activities of the carboxymethyl cellulose films.  相似文献   

4.
Bacterial cellulose (BC), derived from kombucha scoby have extraordinary organoleptic properties suitable for development of leather-like materials. An improvement in physical and mechanical property is desirable for the practical applications. This work deals with the treatment of BC by incorporations of three different nanomaterials such as gold nanoparticles (AuNP), silver nanoparticles (AgNP) and graphene oxide (GO). Achieving combined benefits via synergic interactions of different nanomaterials is the major objective herein. While graphene oxide can influence some of the parameters related to mechanical properties, silver nanomaterials can offer antibacterial characteristics. Gold nano materials can bridge the BC/silver/graphene oxide as well as provide the desirable aesthetic colour. Different physical chemical and mechanical characteristics were studied in detail. For example, changes in morphology by imaging fiber network were studied using scanning electron microscopy. Fibre properties were studied by Small Angle X-Ray Scattering (SAXS) and X-Ray Diffraction (XRD). Elemental composition was studied by X-ray photoelectron spectroscopy (XPS) analysis and Raman analysis. The improvement of hydrophobicity was studied by Contact angle meter. Thermal analysis was performed using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). A Picture was provided in ESI to show the modified material's leather-like appearances.  相似文献   

5.
KrF laser photolysis of diphenyl ditelluride in 2-propanol yields a stable solution of tellurium nanosols, which reacts with immersed Ag sheets to yield thin silver telluride films. The nanosols were identified by UV–vis spectroscopy and the films were characterized by electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction analysis. It is revealed that the films are mostly amorphous and contain small contributions of cubic as well as monoclinic Ag2Te structures. The procedure provides the first example of the fast formation of silver telluride thin films by reaction between the elements in inert solvent at room-temperature.  相似文献   

6.
The pyrolytic fragmentation of cellulose in the presence of atomic palladium (Pd) and palladium(II) chloride (PdCl2) has been studied with use of hybrid density functional theory and cellobiose as a model for cellulose. The configuration changes in the host, rearrangement of geometries of the products, and the respective reaction energetics for different fragmentation pathways are analyzed. While Pd is found to undergo insertion at the beta-1,4-linkage oxygen (O1)-carbon (C-1) of the rings, Pd(II) chloride is observed to promote the cleavage of the chain as well as rearrangement of the rings. A detailed mechanism for the formation of levoglucosan from one of the fragments following the interaction with PdCl2 is also highlighted.  相似文献   

7.
The enthalpy of interaction between cellobiose and sodium carboxymethyl cellulose, methyl cellulose, and 2-hydroxyethyl cellulose in water is determined. The exothermal nature of the interaction between cellulose and cellulose ethers is established. The strongest intermolecular interaction is found between cellobiose and 2-hydroxyethyl cellulose. The results are discussed in the context of the polysaccharide molecular structure.  相似文献   

8.
Despite nomenclature conventions of the International Union of Pure and Applied Chemistry and the International Union of Biochemistry and Molecular Biology, the repeating unit of cellulose is often said to be cellobiose instead of glucose. This review covers arguments regarding the repeating unit in cellulose molecules and crystals based on biosynthesis, shape, crystallographic symmetry, and linkage position. It is concluded that there is no good reason to disagree with the official nomenclature. Statements that cellobiose is the repeating unit add confusion and limit thinking on the range of possible shapes of cellulose. Other frequent flaws in drawings with cellobiose as the repeating unit include incorporation of O-1 as the linkage oxygen atom instead of O-4 (the O-1 hydroxyl is the leaving group in glycoside synthesis). Also, n often erroneously represents the number of cellobiose units when n should denote the degree of polymerization i.e., the number of glucose residues in the polysaccharide.  相似文献   

9.
The formation of cellulose-nickel nanocomposites has been studied by WAXS, X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, and scanning electron spectroscopy. Changes in the experimental conditions make it possible to widely vary the size of nickel and its oxide nanoparticles in the bulk and on the surface of cellulose fibers and to monitor the localization of these nanoparticles with the structure of cellulose remaining unchanged. The use of cellulose allowed preparation of nickel nanoparticles stabilized in the matrix.  相似文献   

10.
To investigate the solvent/solute interactions that take place during the dissolution of cellulose, cellobiose was employed as a model of the longer-chain cellulose molecule in a dissolution study of the cellobiose/LiCl/N-methyl-2-pyrrolidone (NMP) system, conducted using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), 13C, 35Cl, and 7Li NMR spectroscopy, and conductivity measurements. For the LiCl/NMP system, FTIR and 13C NMR analyses of the NMP carbonyl moiety showed a strong dependence on the LiCl concentration, which suggested an association between the Li+ cations and the carbonyl groups of NMP. As the cellobiose molecules are dissolved in the LiCl/NMP solvent, the Li+–Cl? ion-pairs in LiCl/NMP are dissociated. Strong hydrogen bonds are then formed between the hydroxyl groups of cellobiose and the Cl? anions, resulting in breakage of the intermolecular hydrogen bonds of cellobiose. Meanwhile, the Li+ cations are further associated with the extra free NMP molecules. However, the NMP molecules do not directly interact with the dissolved cellobiose. Based on these results, we propose that our study is conducive to a more in-depth comprehension of the dissolution mechanism of cellulose in LiCl/NMP.  相似文献   

11.
The goal of this work is the preparation of monolayers of cellulose I nanocrystals providing flat crystalline cellulose surfaces. Suspensions of cellulose nanocrystals were prepared by hydrolyzing ramie and tunicin fibers with sulfuric acid. Due to surface grafted sulfate groups, the negatively charged, rod-like cellulose nanocrystals were found to form stable layers at the air-water interface in the presence of a cationic amphiphilic molecule such as dioctadecyldimethylammonium (DODA) used in this work. These layers were formed at different cellulose-DODA weight ratios, compressed and analyzed by tensiometry, ellipsometry and Brewster angle microscopy. At low cellulose concentrations the layers are discontinuous, becoming dense and homogeneous upon reaching a critical weight ratio, which depends on the aspect ratio of the cellulose nanocrystals. After transfer onto silicon wafers, the surface composition and morphology as well as the thickness of the films were examined by X-ray photoelectron spectroscopy, ellipsometry and atomic force microscopy. The results indicate that they are monolayer films, well structured, relatively smooth and pure. These films offer a crystalline and easily reproducible model cellulose surface.  相似文献   

12.
A novel, one step and simple methodology for the fabrication of submicron scale silver patterns is demonstrated. The photosensitivity of an organic silver salt has been utilized for this purpose of fabrication. The silver-organometallic compound is converted to metallic silver selectively in the illuminated regions. Surface morphology was studied by scanning electron microscopy (SEM). Energy dispersion spectroscopy (EDS) shows the presence of silver in the developed film. X-ray photoelectron spectroscopy (XPS) confirms the formation of metallic silver. Feature sizes of the order of 200 nm have been achieved using this technique.  相似文献   

13.
Cellulose nanocrystals (CNC) were functionalized in aqueous media at the reducing, aldehyde ends of cellulose. CNC oxidation to produce carboxyl groups was followed by carbodiimide-mediated reaction to install thiol groups. The selectivity and extent of thiolation at the reducing ends was qualitatively confirmed by imaging (transmission electron microscopy) silver nanoparticles that tagged the CNC termini and by X-ray photoelectron spectroscopy, respectively. The adsorption of thiolated CNC onto gold surfaces as well as the viscoelastic property of the formed adlayer was investigated by using quartz crystal microgravimetry. The thiolated CNC chemisorbed on the surfaces were further analyzed for surface density and distribution by using atomic force microscopy. Overall we introduce a facile, mild asymmetric thiolation procedure as an efficient alternative to conventional reductive amination.  相似文献   

14.
The Chromatographic behaviour of nanogram amounts of antimony in ethyl ether medium was studied by radioisotope techniques on cellobiose, cellulose and seven substituted celluloses. It was found that antimony is strongly retained and can be separated from macro amounts of manganese, iron, gold, uranium, mercury, arsenic and several other metals. Antimony could be quantitatively recovered by elution from natural cellulose and cellobiose. The method can be applied in several analytical problems concerning the separation of traces of antimony.  相似文献   

15.
Synthesis of bi-functional silica particles by a simple wet chemical method is described where the mixture of ultra fine nanoparticles (1-3 nm) of titania and silver were attached on the silica particle surface in a controlled way to form a core-shell structure. The silica surface showed efficient bi-functional activity of photo-catalytically self cleaning and antibacterial activity due to nanotitania and nanosilver mutually benefiting each other's function. The optimum silver concentration was found where extremely small silver nanoparticles are formed and the total composite particle remains white in color. This is an important property in view of certain applications such as antibacterial textiles where the original fabric color has to be retained even after applying the nanosilver on it. The particles were characterized at each step of the synthesis by X-ray photoelectron spectroscopy, UV-visible spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and electron energy loss spectroscopy. Bi-functional silica particles showed accelerated photocatalytic degradation of methylene blue as well as enhanced antibacterial property when tested as such particles and textiles coated with these bi-functional silica particles even at lower silver concentration.  相似文献   

16.
The effect of ionic liquids (ILs) on the solubility of cellulose was investigated by changing their anions and cations. The structural variation included 11 kinds of cations in combination with 4 kinds of anions. The interaction between the IL and cellobiose, the repeating unit of cellulose, was clarified through nuclear magnetic resonance (NMR) spectroscopy. The reason for different dissolving capabilities of various ILs was revealed. The hydrogen bonding interaction between the IL and hydroxyl was the major force for cellulose dissolution. Both the anion and cation in the IL formed hydrogen bonds with cellulose. Anions associated with hydrogen atoms of hydroxyls, and cations favored the formation of hydrogen bonds with oxygen atoms of hydroxyls by utilizing activated protons in imidazolium ring. Weakening of either the hydrogen bonding interaction between the anion and cellulose, or that between the cation and cellulose, or both, decreases the capability of ILs to dissolve cellulose.  相似文献   

17.
The surface state of electrolytic silver before and after treatment with a reaction mixture in the course of ethylene glycol oxidation to glyoxal was studied using X-ray photoelectron spectroscopy and scanning electron microscopy. It was found that electrophilic forms of adsorbed oxygen, which participate in the selective conversion of ethylene glycol, were formed on the surface of electrolytic silver crystals under exposure to oxygen under conditions similar to catalytic process conditions. The treatment of the catalyst with a reaction mixture resulted in the formation of filamentous carbon deposition products. A mechanism of formation of carbon-containing products was proposed.  相似文献   

18.
The study explores the potential of cellulose nanocrystals (CNC), cellulose nanofibers (CNF) and chitin nanocrystals (ChNC) isolated from bioresidues to remove silver ions from contaminated water. Zeta sizer studies showed negatively charged surfaces for CNC and CNF isolated from cellulose sludge in the acidic and alkaline pHs, whereas ChNC isolated from crab shell residue showed either positive or negative charges depending on pH conditions. Model water containing silver ions showed a decrease in Ag+ ion concentration (measured by inductively coupled plasma-optical emission spectrometer; inductively coupled plasma mass spectrometry), after treatment with CNC, CNF and ChNC suspensions. The highest Ag+ ion removal was measured near neutral pH for CNC, being 34.4 mg/g, corresponding to 64 % removal. ChNC showed 37 % and CNF showed 27 % removal of silver ions. The WDX (wavelength dispersive X-ray analysis) and XPS (X-ray photoelectron spectroscopy) analysis confirmed the presence of silver ions on the surface of the nanocellulose and nanochitin after adsorption. Surface adsorption on the nanoparticles via electrostatic interactions is considered to be the prominent mechanism of heavy metal ion capture from aqueous medium, with CNC with negative surface charge and negatively charged functional groups being most favourable for the adsorption of positively charged Ag+ ions compared to other native bionanomaterials.  相似文献   

19.
This paper presents an environmentally friendly strategy to obtain alkynylated cellulose fibers (ACFs), a versatile platform for tailoring cellulose by robust click reaction. This strategy is based on the integration of two efficient reactions: selective oxidation of cellulose fibers by sodium periodate (NaIO4) generating dialdehyde cellulose fibers and subsequent Schiff base reaction with 3-ethynylaniline yielding alkynylated cellulose fibers (ACFs). The alkynyl moieties introduced into ACFs were simply transferred with azido compounds under Cu(I) catalysis and mild conditions. The content of alkynyl groups of ACFs was found to be as high as 3.0 mmol/g. Fourier transform infrared spectroscopy (FTIR) showed that the selective oxidation of cellulose fibers generated aldehyde groups and the Schiff base reaction resulted in the incorporation of ethynyl groups and benzene rings into cellulose fibers. FTIR and X-ray photoelectron spectroscopy results confirmed the successful click reaction between ACFs and 4-azidobenzoic acid. This clickable platform would serve as a versatile starting precursor for finely tuning cellulose fibers for advanced applications.  相似文献   

20.
We addressed the interaction of oxygen with silver by synchrotron based near ambient pressure X-ray photoelectron spectroscopy at temperatures relevant for industrial oxidation reactions performed with silver catalysts. For silver single crystals, polycrystalline foils and powders in equilibrium with gas phase O(2), we observed the dynamics of the formation of five different atomic oxygen species with relative abundances depending on the temperature and time. Correlation of their formation kinetics with spectroscopic features and thermal stability indicates that these are distinct species with different electronic structures, which might relate to the different roles of silver in oxidation reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号