首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cellobiose and glucose are valuable products that can be obtained from enzymatic hydrolysis of cellulose. This study discusses changes in the crystalline form of celluloses to enhance the production of sugars and examines the effect on structural properties during enzymatic hydrolysis. Various crystalline celluloses consisting of group I (cell I, cell IIII, cell IVI) and group II (cell II, cell IIIII, cell IVII) of similar DPs were prepared as starting materials. The similar DP values allowed a more direct comparison of the hydrolysis yields. The outcomes were analyzed and evaluated based on the residues and supernatants obtained from the treatment. As a result: (1) action of the cellulase of Trichoderma viride decreased both DP and crystallinity, with greater changes in group II celluloses, (2) the polymorphic interconversion process that occurred for cell IIII, cell IVI, cell IIIII and cell IVII during the treatment was independent of the enzymatic hydrolysis, thus, the hydrolysis behaviors depended on the starting material of the celluloses, and (3) higher sugar production was obtained from cell IIII and group II. Therefore, the hydrolysis behavior of the various crystalline celluloses depended on the particular polymorph of the starting material.  相似文献   

2.
The dissociation behavior of the crystalline cellulose polymorphs Iβ, II, IIII, and IVI (Cell Iβ, etc.) at 503 K and 100 bar was studied by molecular dynamics simulation, and the mechanism of the experimental liquefaction during treatment with hot-compressed water was elucidated. The results showed that the mini-crystals of Cell Iβ and Cell IVI exhibited similar resistance to dissociation, which implies the occurrence of crystal transformation from Cell IVI to Cell I. On the other hand, the mini-crystal of Cell II gradually dissociated into the water environment with the progress of time in the simulation. The water molecules gradually penetrated the Cell II crystal, especially along the (1 \(\overline{1}\) 0) crystal plane. In contrast, the dissolution behavior differed for the surface and the core areas of the mini-crystal of Cell IIII. The cellulose chains on the surface were dissociated into the water environment, whereas the ordered structure of the chains in the core region was maintained for the entire simulation period. The detailed investigation showed that the core part of Cell IIII was transformed into Cell I at an early stage of the simulation: Cell I is resistant to dissociation of the structure even in the hot-compressed water environment. It can be confirmed that the stability of these four crystals under high temperature and pressure conditions follows the order: Cell II < IIII < IVI ≈ Iβ.  相似文献   

3.
Sum-frequency-generation (SFG) vibration spectroscopy is a technique only sensitive to functional groups arranged without centrosymmetry. For crystalline cellulose, SFG can detect the C6H2 and intra-chain hydrogen-bonded OH groups in the crystal. The geometries of these groups are sensitive to the hydrogen bonding network that stabilizes each cellulose polymorph. Therefore, SFG can distinguish cellulose polymorphs (Iβ, II, IIII and IIIII) which have different conformations of the exocyclic hydroxymethylene group or directionalities of glucan chains. The C6H2 asymmetric stretching peaks at 2,944 cm?1 for cellulose Iβ and 2,960 cm?1 for cellulose II, IIII and IIIII corresponds to the trans-gauche (tg) and gauche-trans (gt) conformation, respectively. The SFG intensity of the stretch peak of intra-chain hydrogen-bonded O–H group implies that the chain arrangement in cellulose crystal is parallel in Iβ and IIII, and antiparallel in II and IIIII.  相似文献   

4.
Elastic modulus of the crystalline regions of cellulose polymorphs   总被引:1,自引:0,他引:1  
The elastic modulus El of the crystalline regions of cellulose polymorphs in the direction parallel to the chain axis was measured by x-ray diffraction. The El values of cellulose I, II, IIII, IIIII, and IVI were 138, 88, 87, 58, 75 GPa, respectively. This indicates that the skeletons of these polymorphs are completely different from each other in the mechanical point of view. The crystal transition induces a skeletal contraction accompanied by a change in intramolecular hydrogen bonds, which is considered to result in a drastic change in the El value of the cellulose polymorphs. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
Hydrolysis rate of alkoxy-NNO-azoxy compounds like di(methoxy-NNO-azoxy)methane I, di-(methyl-NON-azoxy)formal II, di(methoxy-NNO-azoxy)methane III, and 2,2-di(methoxy-NNO-azoxy)propane IV in 5 M KOH solution was measured by manometric method at 80°C; rates relation is 1:40:540:10. Reversible deprotonation to form C-anions followed by their rapid decomposition is a presumable mechanism for compounds I–III. Nucleophilic attack of OH-anion on the carbon atom of CH3ON=N(O) group is the most probable first stage of hydrolysis in the case of compound IV.  相似文献   

6.
FTIR spectra of the title carboxylic acids (IIII) with 4-substituents (H, CH3 or C6H5) and their related compounds IVVI with 4-(substituted phenyl) groups were measured in dilute CCl4 and CHCl3 solutions. The concentration dependence of FTIR spectra of IIV was also measured in these solutions. These spectra were subjected to curve analysis in order to quantitatively identify the rotational isomers of 3-carboxy group attributable to steric hindrance of the 4-substituents. For I, II and IIIVI, two, four and five ν(CO) bands were observed for their carboxy groups, respectively, indicative of monomer–dimer equilibrium and two and three kinds of rotational isomers for II and IIIVI, respectively. Compounds IIIVI were found to form intra-molecular hydrogen bonds between the trans-type of the 3-carboxy group and the π-electrons in the 4-benzene ring. We have worked out a method to estimate the association constant (K) of complicated monomer–dimer equilibria such as IIVI. The K values of IIV decrease remarkably in the order of H (I), C6H5 (III), CH3 (II) and C6H4-p-OCH3 (IV) in CCl4 and I, II, III and IV in CHCl3; these orders are discussed.  相似文献   

7.
Mononuclear copper(II) complexes of 1,2,4-triazole-based Schiff base macrocyclic hydrazones, III and IV, have been reported. The prepared amorphous complexes have been characterized by spectroscopic methods, electron spray ionization mass spectrometry, and elemental analysis data. Electrochemical studies of the complexes in DMSO show only one quasi-reversible reduction wave at +0.43 V (ΔE = 70 mV) and +0.42 V (ΔE = 310 mV) for III and IV, respectively, which is assigned to the Cu(II) → Cu(I) reduction process. Temperature dependence of magnetic susceptibilities of III and IV has been measured within an interval of 2–290 K. The values of χM at 290 K are 1.72 × 10?3 cm3 mol?1 and 1.71 × 10?3 for III and IV, respectively, which increases continuously upon cooling to 2 K. EPR spectra of III and IV in frozen DMSO and DMF were also reported. The trend g|| > g⊥ > ge suggests the presence of an unpaired electron in the dx2?y2 orbital of the Cu(II) in both complexes. Furthermore, spectral and antimicrobial properties of the prepared complexes were also investigated.  相似文献   

8.
Summary Solvent extraction of uranium-sodium diethyldithiocarbamate with ethylmethyl ketone and separation from titanium, zirconium, thorium, lanthanum and cerium has been described. It has been found that 11.75 to 47.00 mg of uranium can be extracted from a binary mixture containing 4.78 to 19.04 mg of titanium, 9.12 to 36.48 mg of zirconium, 116.0 to 460.0 mg of thorium, 6.95 to 27.8 mg of lanthanum or 7.06 to 28.24 mg of cerium at pH 3.0. The pH range between which the separations may be carried out successfully is 2.0 to 3.5. The following cations interfere in the separations: CuII, FeIII, CoII, BiIII, NiII, CrVI, TeIV, SeIV, AgI, HgII, AsIII, SnIV, PbIV, CdII, MoVI, MnII, VV, ZnII, InIII, TlI, WVI, OsVIII and NbV.
Zusammenfassung Uran kann durch Extraktion als Diäthyldithiocarbamidat mit Methyläthylketon von Ti, Zr, Th, La oder Ce getrennt werden. Der günstigste pH-Bereich liegt zwischen 2,0 und 3,5. Die Trennungen wurden mit folgenden Mengen durchgeführt: U (11,75–47,00 mg); Ti (4,78 bis 19,04 mg), Zr (9,12–36,48 mg) Th (116,0–460,0 mg), La (6,95–27,8 mg), Ce (7,06–28,24 mg). Folgende Ionen verursachen Störungen: CuII, FeIII, CoII, BiIII, NiII, CrVI, TeIV, SeIV, AgI, HgII, AsIII, SnIV, PbIV, CdII, MoVI, MnII, VVI, ZnII, InIII, TlI, WVI, OsVIII sowie NbV.
  相似文献   

9.
Synthesis, characterization and thermal behavior of four compounds that have the general formula [Cu{Pd(CN)4}(L)x]n, in which en=1,2-diaminoethane and pn=1,3-diaminopropane (L=en, x=1 (I); L=pn, x=1 (II); L=en, x=2 (III); L=pn, x=2 (IV)) were described in this work. The complexes were studied by elemental analysis, infrared spectroscopy (IR), differential thermal analysis (DTA) and thermogravimetry (TG) and the residues of the thermal decomposition were characterized by X-ray powder diffraction and found as a mixture of CuO and PdO. The stoichiometry of the compounds was established via thermogravimetric and elemental analyses and their structures were proposed as coordination polymers based on their infrared spectra. The following thermal stability sequence was found: IV<I=II<III.  相似文献   

10.
The catalytic activity of the thermolysis products of double complex compounds in the decomposition reaction of ammonium perchlorate was studied. The products used are C1.4N1.6H3CoFe (I), C6N8Co4Fe3 (II), O11Co4Fe3 (III), O8.5(CN)0.3Cu3Fe2 (IV), and reactive CuO. All active phases decrease the temperature of complete decomposition of NH4ClO4, and the order of temperature decreasing is the following: III (120 °C) > IV > III (80 °C) ? CuO.  相似文献   

11.
The structure of microbial cellulose (MC) produced by Acetobacter xylinum was studied in presence of Fluorescent Brightener, Direct Blue 1, 14, 15, 53, Direct Red 28, 75 and 79, as probe. X-ray diffraction pattern of the product showed that it was a crystalline complex of dye and cellulose. The product has the structure in which the monomolecular layer of the dye molecule is included between the cellulose sheets corresponding to the ( $ 1\bar{1}0 $ ) planes of microbial cellulose. As a result of dye inclusion, d-spacing of lower angle plane (100) of products becomes 8.0–8.8 Å instead of 6.1 Å of MC. The d-spacing for the higher angle plane must be (010) plane due to stronger van der Waals forces between the pyranose rings which reduced 5.3 Å space of (110) plane of MC to 3.9–4.5 Å in the product. However, cellulose regenerated from FB, DR28 products was cellulose I and IV, respectively, and that from each DB1, 14, 15, 53, DR75 and 79 products was cellulose II. Solid state 13C NMR and deuteration-IR showed the product was non-crystalline which was contrasted to X-ray results. The regenerated celluloses were cellulose Iβ, IVI and II, respectively. Thus the structure of the product depends on the characteristics of dye which affects the conformation of cellulose at the nascent stage by the direct interaction with cellulose chains. The different regenerated celluloses as well as different fine structure in the same cellulose allomorph were produced depending mainly on number and position of the sulfonate groups in the dye.  相似文献   

12.
The ESR.-spectrum of the radical anion of 1,6-imino-[10]annulene (II) has been recorded. Its hyperfine structure reflects the reduced symmetry (Cs) of the molecule, as compared with that (C2v) of 1,6-methano- and 1,6-oxido-[10]annulenes (I and III, resp.). The coupling constants of the ring protons in II? are intermediate between the corresponding values of I? and III?. The ESR.-spectrum of the radical anion of 1,6-methylimino-[10]annulene (IV) has also been obtained, but not analysed in detail. The relative stabilities of the radical anions of the four bridged [10]annulenes are: I??II? > III? > IV?. The main secondary product identified by ESR.-spectroscopy after the decay of II?, III? and IV? is the naphthalene radical anion. A remarkable exception is IV, when reduced with sodium in 1,2-dimethoxyethane: in this case the ESR.-spectrum of the azulene radical anion is observed.  相似文献   

13.
Four new fluorochromatouranylates, namely, K[UO2(CrO4)F] · 1.5H2O (I), Rb[UO2(CrO4)F] · 1.5H2O (II), Rb[UO2(CrO4)F] · 0.5H2O (III), and Cs[UO2(CrO4)F] · 0.5H2O (IV), have been synthesized, and their crystallographic characteristics have been determined. All the compounds crystallize in monoclinic system, space group P21/c, with the unit cell parameters a = 13.1744(5) Å, b = 9.4598(3) Å, c = 13.0710(4) Å, β = 103.746(1)°, Z = 4, R = 0.0235 (I); a = 13.5902(7) Å, b = 9.5022(4) Å, c = 13.2271(6) Å, β = 102.914(2)°, Z = 4, R = 0.0247 (II); a = 24.7724(8) Å, b = 12.6671(4) Å, c = 9.4464(3) Å, β = 97.661(1)°, Z = 8, R = 0.0448 (III); a = 25.725(1) Å, b = 12.8261(5) Å, c = 9.4929(4) β = 97.208(1)°, Z = 8 (IV). The pairs of compounds I and II and compounds III and IV are isostructural. Crystals of compounds I–III have been subjected to complete X-ray diffraction study. It has been established that the structures of compounds I–III are built of [UO2(CrO4)F] n n? layers, which are parallel to the (100) plane and linked into a framework by alkali-metal cations located between layers, together with water molecules. The effect of topological and geometric isomerism on the structural features of 34 known uranyl compounds of the AT3M2 crystallochemical group, to which the studied compounds I–III also belong, is discussed.  相似文献   

14.
For amides belonging to series RCONH2 (I), RCONHMe (II), RCONHPh (III), and RCONMe2 (IV) rate constants k1 (l mol-1 s-1) were determined (in acetonitrile at 25°C) specifying the nucleophilic reactivity of the oxygen atom in amides toward benzoyl chloride and diphenyl chlorophosphate. The lack of substrate selectivity in the reactions in question was established. For equal values of inductive constants * of the R substituents the reactivity sequence of amides with respect to both substrates is the same (I >> IV > II, and III > II), and it does not follow the corresponding sequence of basicities. A conclusion was drawn that both groups of reactions proceed through cyclic transition states resembling reagents: six-membered with amides I and III, and five-membered with amides II and IV.  相似文献   

15.
[MnIIxFeII1?x(H2O)6][LiFeIII(ox)3] (with 0 ≤ x ≤ 1) crystallizes in the space group P31c with a = 9.341(3) Å, c = 10.226(3) Å, c/a = 1.0947, and V = 772.8(5) Å3 for Z = 2. The compound has a layered structure with two enantiomeric layers per unit cell. The layers are built up by an iron and lithium oxalate framework with intercalated M(II)-water octahedra of the formula [MnIIxFeII1?x(H2O)6][MIMIII(ox)3]. The value of x cannot be specified at present. The structure displays intermolecular hydrogen bonding between the layers.  相似文献   

16.
Summary This paper deals with the preparation and investigation of thermal and spectral properties of the complexes Cu(5-ClSal)2·2H2O (I), Cu(5-BrSal)2·2H2O (II), Cu(5-ClSal)2(nia)(H2O) (III), Cu(5-BrSal)2(nia)(H2O) (IV), and Cu(5-ISal)2(nia)(H2O) (V) (where Sal=salicylate, and nia=nicotinamide). TG, DTG, DTA, EPR, IR and electronic spectra have been used to study thermal and spectral properties of the complexes. The chemical composition of the complexes, the solid intermediates and the resultant products of thermolysis have been identified by means of elemental analysis and complexometric titration. Schemes of the decomposition of the complexes are suggested. Heating of the compounds first resulted in the release of water molecules. The thermal stability of these complexes can be ordered in the sequence: I <II <IV=V< III. The final product of the thermal decomposition was CuO in all cases. IR data suggested a bidentate coordination of carboxylates to Cu(II) in complexes I-II and bridging ones for complexes III-V.  相似文献   

17.
Binuclear complexes of Sm(III), Eu(III), Gd(III), Tb(III), and Dy(III) nitrates with 4,4,10,10-tetramethyl-1,3,7,9-tetraazospiro[5.5]undecane-2,8-dione (C11H20N4O2, SC)—[Sm(NO3)3(SC)(H2O)]2(I), [Eu(NO3)3(SC)(H2O)]2 (II), [Gd(NO3)2(SC)(H2O)3)]2(NO3)2 (III), [Tb(NO3)3(SC)(H2O)]2 (IV), [Dy(NO3)3(SC)(H2O)]2 (V), are synthesized, and their X-ray diffraction analyses are carried out. The crystals of complexes I–V are monoclinic: space group P21/n for III and P21/c for I, II, IV, and V. In centrosymmetric coordination complexes II, III, IV, and V, the Ln atoms are coordinated by two O(1) and O(2) atoms of two molecules of the SC ligands bound by a symmetry procedure (1 ? x, ?y, 1 ? z), three bidentate nitrate anions, and a water molecule. The coordination numbers of the metal atoms are equal to 9, and the coordination polyhedra are considerably distorted three-capped trigonal prisms, whose bases include the O(1), O(2), O(12) and O(3), O(7), O(9) atoms. The dihedral angle between the bases of the prism is 18°, and that between the mean planes of the side faces is 55°–71° for I, 17° and 55°–71° for II, 16° and 55°–70° for IV, and 16° and 55°–70° for V. The Sm...Sm distance in complex I is 9.44 Å, Eu...Eu in II is 9.42 Å, Tb...Tb in IV is 9.36Å, and Dy...Dy in V is 9.36Å. The gadolinium atom in complex III is coordinated by two oxygen atoms of two ligand molecules bound by a symmetry procedure (?x, ?y + 1, ?z + 1), two bidentate nitrate anions, and three water molecules. One of the nitro groups in compound III is localized in the external coordination sphere of the metal. The coordination number of gadolinium is 9, and the coordination polyhedron is a significantly distorted three-capped trigonal prism, whose base includes the O(1), O(2), O(7) and O(4), O(5), O(9) atoms. The dihedral angle between the bases of the prism is 22.8°, and that between the mean planes of the side faces is 53°–72°. The Gd...Gd distance in complex III is 9.17 Å.  相似文献   

18.
The X-ray diffraction study of the crystalline products of the reaction between potassium tetraiodomercurate(II), ?-caprolactam, and lanthanum(III) nitrate at a ratio of 3: 16: 2 in an aqueous solution has shown the presence of the following three new crystalline compounds: [LaCpl8]2[HgI4]3 (I), [LaCpl8][HgI4]I3 (II), and [LaCpl7(H2O)]2[HgI4]2[Hg2I6] (III), where Cpl is ?-caprolactam ?-C6H11NO. Compounds I and II crystallize in tetragonal crystal system, space groups P42/n and $I\bar 4$ , respectively. For compound I, a = 18.59320(10) Å, c = 19.5782(3) Å, V = 6738.32(12) Å3, Z = 2, and ρcalc = 2.067 g/cm3. For compound II, a = 13.2245(10) Å, c = 20.0310(3) Å, V = 3503.17(6) Å3, Z = 2, ρcalc = 2.022 g/cm3. The crystals of compound III are monoclinic (space group P 2 1/n, a = 20.1202(6) Å, b = 14.0569(4) Å, c = 46.3228(12) Å, β = 93.4770(10)°, V = 13077.3(6) Å3, Z = 4, ρcalc = 2.274 g/cm3). [La(Cpl)8]2[Hg2I6]3 (IV), a new double ionic complex salt, has also been synthesized and studied by X-ray diffraction. The crystals of compound IV are triclinic (space group $P\bar 1$ , a = 12.5021(3) Å, b = 14.6436(3) Å, c = 21.4695(4) Å, α = 84.2300(10)°, β = 87.2230(10)°, γ = 74.9970(10)°, V = 3776.30(14) Å3, Z = 1, ρcalc = 2.452 g/cm3). All complexes have a dicrete ionic structure, and the nearest surrounding of a La atom is distorted square-prismatic or trigonal-dodecahedral. The crystal packing of cations is distorted face-centered cubic (I and II) or body-centered cubic (III and IV) with anions located in its cavities.  相似文献   

19.
Summary Synthesis, elemental (CHN), spectral (FTIR), thermogravimetry (TG), differential thermal analysis (DTA) and complexometric titration have been applied to the investigation of the thermal behavior and structure of the complexes: Mg(ac)2(mpc)3·3H2O(I), Mg(Clac)2(mpc)2·3H2O(II), Mg(Cl2ac)2(mpc)2·3H2O(III), Mg(Cl3ac)2(mpc)2·3H2O(IV) and [Cu(ac)2(mpc)]2·3H2O(V) (ac=CH3COO-, Clac=ClCH2COO-, Cl2ac=Cl2CHCOO-, Cl3ac=Cl3CCOO- and mpc=methyl-3-pyridyl carbamate). Thermal decomposition of these complexes is a multi-stage processes. The composition of the complexes and the solid state intermediate and resultant products of thermolysis had been identified by means of elemental analysis and complexometric titration. The possible scheme of decomposition of the complexes is suggested. Heating the complexes first resulted in a release of water molecules. The TG results show that the loss of the volatile ligand (mpc) occurs in one step for complexes II, IV and V, and in two steps for complexes I and III. The final solid product of thermal decomposition was MgO or CuO. The thermal stability of the complexes can be ordered in the sequence: I=II<IV<III<V. Mpc was coordinated to Mg(II) or Cu(II) through the nitrogen atom of its heterocyclic ring. IR data suggest to a unidentate coordination of carboxylates to magnesium or copper n complexes I-V. The preliminary studies have shown that the complexes do have antimicrobial activities against bacteria, yeasts and/or fungi. The highest antimicrobial activities were manifested by the complex V.  相似文献   

20.
Coordination compounds [CoLCl2] (I), [CuLCl(NO3)] (II), CuL(NO3)2 (III), and CuLCl2 (IV) (where L is a chiral pyrazolylquinoline—a derivative of terpenoid (+)-3-carene) were synthesized. X-ray diffraction data showed that crystal structures I and II are built of mononuclear acentric molecules. In the molecule of complex I, the Co2+ ion coordinates two N atoms of bidentate cycle-forming ligand L and two Cl atoms. The coordination polyhedron of Cl2N2 is a distorted tetrahedron. For complex I, μeff = 4.50 μB, which corresponds to a high-spin configuration d 7. In the molecules of II(1), II(2) (which are diastereoisomers of complex II), each Cu2+ ion coordinates two N atoms of bidentate cycle-forming ligand L, the Cl atom, and two O atoms of bidentate cyclic NO 3 ? ion. The ClN2O2 coordination polyhedra are tetragonal pyramids with different degrees of distortion. The structure of complex II consists of supramolecular clusters, i.e., isolated chains incorporating the molecules of II(1) and II(2). The values of μeff for II–IV correspond to the d 9 configuration. The results of EPR and IR study suggest that complex III contains the O4N2 polyhedron, whereas complex IV contains the Cl2N2 polyhedron. Complexes I and IV were found to show a high catalytic activity in ethylene polymerization reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号