首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 474 毫秒
1.
In order to study water transfer characteristics inside non-saturated media during methane hydrate formation and dissociation processes, water changes on the top, middle and bottom locations of experimental media during the reaction processes were continuously followed with a novel apparatus with three pF-meter sensors. Coarse sand, fine sand and loess were chosen as experimental media. It was experimentally observed that methane hydrate was easier formed inside coarse sand and fine sand than inside loess. Methane hydrate formation configuration and water transfer characteristics during methane hydrate formation processes were very different among the different non-saturated media, which were important for understanding methane hydrate formation and dissociation mechanism inside sediments in nature.  相似文献   

2.

The main purpose of this study is numerically investigating the flow and heat transfer of nanofluid flow inside a microchannel with L-shaped porous ribs as well as studying the effect of porous media properties on the performance evaluation criterion (PEC) of the fluid. In the present paper, in addition to the pure water fluid, the effect of using water/CuO nanofluid on the PEC of microchannel was investigated. The flow was simulated in four Reynolds numbers and two different volume fractions of nanoparticles in laminar flow regime. The investigated parameters are the thermal conductivity and the porosity rate of porous medium. The results indicate that with the existence of porous ribs, the nanofluid does not have a significant effect on heat transfer increase. By using porous ribs in flow with Reynolds number of 1200, the heat transfer rate increases up to 42% and in flow with Reynolds number of 100, this rate increases by 25%.

  相似文献   

3.
Hydrate formation and dissociation processes are always accompanied by water migration in porous media, which is similar to the ice. In our study, a novel pF-meter sensor which could detect the changes of water content inside sand was first applied to hydrate formation and dissociation processes. It also can study the water change characteristics in the core scale of a partially saturated silica sand sample and compare the differences of water changes between the processes of formation and dissociation of methane hydrate and freezing and thawing of ice. The experimental results showed that the water changes in the processes of formation and dissociation of methane hydrate were basically similar to that of the freezing and thawing of ice in sand. When methane hydrate or ice was formed, water changes showed the decrease in water content on the whole and the pF values rose following the formation processes. However, there were very obvious differences between the ice thawing and hydrate dissociation.  相似文献   

4.

Numerical simulations are performed to analyze the thermal characteristics of a latent heat thermal energy storage system with phase change material embedded in highly conductive porous media. A network of finned heat pipes is also employed to enhance the heat transfer within the system. ANSYS-FLUENT 19.0 is used to create a transient multiphase computational model to simulate the thermal behavior of the storage unit. Copper foam is the porous medium used to enhance the heat transfer and is impregnated with the phase change material, potassium nitrate (KNO3). The effects of the porosity of the metal foam and the quantity of heat pipes on the thermal characteristics of storage unit have been investigated. The results indicated that increasing the quantity of the embedded heat pipes leads to drastic acceleration of both charging and discharging process. Impregnating the copper foam with potassium nitrate phase change material significantly affects the total charging and discharging times of the storage unit. It was shown that the porosity of the metal foam plays a key role in the thermal behavior of the system during the charging and discharging processes.

  相似文献   

5.
Results of simulating electrical-conduction and filtration processes in porous media with two-phase saturation have been presented. A three-dimensional cubic lattice of capillaries has been used as a model porous medium. The sizes and amount of capillaries in the model are selected according to a preset pore-size distribution. The results obtained enable one to establish the general regularities of the influence of the pore structure on transfer processes at two-phase saturation, analyze the dependence of the electrical-conduction and filtration processes on the features of porous-medium saturation, and illustrate the potential of the capillary-lattice model for describing the properties of porous media with two-phase saturation.  相似文献   

6.
Results of simulation of electrical-conduction and filtration processes in porous media have been reported. For better visualization and simplification of the analysis of the results obtained, simple model distributions of pore sizes with the patterns of a triangle, rectangle, semiellipse, etc., have been used. The porous medium has been simulated in terms of a capillary lattice model, which represents a three dimensional cubic lattice of capillaries the sizes and number of which are selected according to a preset pore size distribution. The data obtained reflect the general regularities of the influence of the pore structure on the transfer processes, show the interrelation between the parameters characterizing these processes, and illustrate the potential of the capillary-lattice model for describing the properties of porous media.  相似文献   

7.
Flow characteristics and regeneration processes of foams were influenced by lamella properties and pore-throat structure in porous media. In this article, porous media was simplified as a bunch of constricted capillary tubes according to grain size, pore-throat radius, and immobile water saturation in porous media. Based on an analysis of forces upon liquid lamella, a mathematical model of foam migration and regeneration at steady state was established according to the mass conservation law and the momentum conservation law in porous media. The model could be used to calculate some important parameters in porous media, such as pressure distribution, shearing stress, lamella morphology, liquid-layer thickness, regeneration bubble size, etc. A series of flow experiments were carried out to investigate the influence of liquid properties and pore-throat structure on flow characteristics and resistance behavior of foams in porous media. The experimental results showed that pressure distribution monotonously decreased along porous media. The theoretical results were in good agreement with the experimental results. Foam structure, that is, foam quality was an important factor upon foam resistance behavior in porous media. The strongest resistance ability of foams was achieved at foam quality of 85% in porous media.   相似文献   

8.
Photoinduced electron transfer (ET) reactions between coumarin dyes and N,N-dimethylaniline have been investigated inside niosome, a nonionic innocuous polyethylene glycol (PEG)-based surfactant assembly using steady state and time-resolved fluorescence measurements. The location of coumarin dyes inside the bilayer headgroup region of niosome has been reported and it was verified by determination of the high distribution coefficient of all the dyes inside niosome compared to bulk water. Fluorescence anisotropy parameters of the dyes inside niosome are also in good correlation with the above inference about their location. Bimolecular diffusion guided rates inside niosome were determined by comparing the microviscosities inside niosome and in acetonitrile and butanol solutions and it was found that diffusion of the donor and the acceptor is much slower than the ET rates, implying insignificant role of reactant diffusion in ET reaction inside niosome. We have observed a Marcus inversion region in our restricted media, which shows maxima at lower exergonicity. Such behavior has been demonstrated by the presence of nonequilibrium solvent excited state using two dimensional ET (2DET) theory. Unusually high quenching rates of two coumarins C-152 and C-152A inside niosome were explained by the presence of a stable non-fluorescent twisted intramolecular charge transfer (TICT) state along with an emissive intramolecular charge transfer (ICT) state. Moreover, intermolecular hydrogen bonding between carbonyl oxygens of these two dyes and water in their non-emissive and emissive charge transfer states also plays a key role in their dynamical exchange with each other [G.-J. Zhao and K.-L. Han, Acc. Chem. Res., 2011].  相似文献   

9.
预混天然气在多孔介质燃烧器中的燃烧与传热   总被引:2,自引:1,他引:1  
在一台小型渐变型多孔介质燃烧器上进行了预混天然气燃烧与传热试验研究,探讨了天然气速度和多孔介质厚度对多孔介质燃烧室的温度分布、排烟温度和流动阻力的影响。结果表明,天然气在渐变型多孔介质燃烧器中燃烧稳定,燃烧室与水冷夹套间的换热受天然气速度和多孔介质厚度影响,换热效果比空管中燃烧明显增强,同时预混天然气通过多孔介质的进出口压差随着天然气速度和多孔介质厚度的增加而增加。  相似文献   

10.
The rheology of pseudoplastic fluids in porous media using network modeling   总被引:1,自引:0,他引:1  
This paper considers the rheology of pseudoplastic (shear thinning) fluids in porous media. The central problem studied is the relationship between the viscometric behavior of the polymer solution and its observed behavior in the porous matrix. In the past, a number of macroscopic approaches have been applied, usually based on capillary bundle models of the porous medium. These simplified models have been used along with constitutive equations describing the fluid behavior (usually of power law type) to establish semiempirical macroscopic equations describing the flow of non-Newtonian fluids in porous media. This procedure has been reasonably successful in correlating experimental results on the flow of polymer solutions through both consolidated and unconsolidated porous materials. However, it does not allow an interpretation of polymer flow in porous media in terms of the flows on a microscopic scale; nor does it allow us to predict changes in macroscopic behavior resulting from variations at a microscopic level in the characteristics of the porous medium such as pore size distribution. In this work, we use a network approach to the modeling of non-Newtonian rheology, in order to understand some of the more detailed features of polymjer flow in porous media. This approach provides a mathematical bridge between the behavior of the non-Newtonian fluid in a single capillary and the macroscopic behavior as deduced from the pressure drop-flow rate relation across the whole network model. It demonstrates the importance of flow redistribution within the elements of the capillary network as the overall pressure gradient varies. As an example of a pseudoplastic fluid in a porous medium, we consider the flow of xanthan biopolymer. This polymer is important as a displacing fluid viscosifier in enhanced oil recovery applications and, for that reason, a considerable amount of experimental data has been published on the flow of xanthan solutions in various porous media.  相似文献   

11.
Peak parking experiments were conducted to study the chromatographic behavior in a RPLC system consisting of a column packed with superficially porous C(18)-particles and a mixture of methanol and water (70/30, v/v). The values of the surface diffusion coefficient and the retention equilibrium constant of a column packed with superficially porous C(18)-particles were comparable to those of columns packed with a C(18)-silica monolith and full-porous C(18)-silica gel particles. The flow-rate dependence of HETP was hypothetically calculated by using moment equations to clarify the influence of the structural characteristics on the chromatographic behavior. The column efficiency of a column packed with the superficially porous particles is higher in the high flow-rate range than that with full-porous spherical particles. This is attributed to the smaller contribution of the intraparticulate mass transfer in the superficially porous particles to band broadening. The moment equations are effective for the quantitative analysis of chromatographic behavior of superficially porous particles.  相似文献   

12.
The study of the inclined flow along with the heterogeneous/homogeneous reactions in the fluid has been widely used in many industrial and engineering applications, such as petrochemical, pharmaceutical, materials science, heat exchanger design, fluid flow through porous media, etc. The purpose of this study is to present an infinite shear rate viscosity model using the inclined Carreau fluid with nanoscale heat transport. The model considers the effect of inclined angle on the fluid’s viscosity and the transfer of heat at the nanoscale. The result shows that the viscosity of the fluid decreases by increasing the inclination angle and the coefficient of heat transfer also increases with the inclination. The model can be used to predict the viscosity and heat transfer fluid’s behavior in the inclined systems that is widely used in the industrial and engineering applications. The results provide a better understanding of the inclined flow behavior of fluids and the heat transfer at the nanoscale, which can be useful in heat exchanger design, fluid flow through porous media, etc. Greater Infinite shear rate viscosity parameter gives the higher magnitude of Carreau fluid velocity. Moreover, inclined magnetic field reduces the velocity due to Lorentz force. Two numerical schemes are used to solve the model, BVP4C and Shooting.  相似文献   

13.
In the present study, we investigate the relationship between the relaxation rate and the filling factor in partially saturated porous media. The filling fluids are polar (water, acetone) and nonpolar (cyclohexane, hexane). The porous sample is a silica glass (Vitrapor#5) with the nominal mean pore size of d = 1 μm ( ± 0.6 μm). All nuclear magnetic resonance relaxation experiments are performed at 20 °C using a NMR instrument operable at 20 MHz proton resonance frequency. The experimental results are compared with a two-phase exchange model providing us information on the strength of surface relaxation and fluid distribution inside pores. These results will affect the NMR estimations about fluid content of porous media.  相似文献   

14.
In this study,a numerical model is developed to investigate the hydrate dissociation and gas production in porous media by depressurization.A series of simulation runs are conducted to study the impacts of permeability characteristics,including permeability reduction exponent,absolute permeability,hydrate accumulation habits and hydrate saturation,sand average grain size and irreducible water saturation.The effects of the distribution of hydrate in porous media are examined by adapting conceptual models of hydrate accumulation habits into simulations to govern the evolution of permeability with hydrate decomposition,which is also compared with the conventional reservoir permeability model,i.e.Corey model.The simulations show that the hydrate dissociation rate increases with the decrease of permeability reduction exponent,hydrate saturation and the sand average grain size.Compared with the conceptual models of hydrate accumulation habits,our simulations indicate that Corey model overpredicts the gas production and the performance of hydrate coating models is superior to that of hydrate filling models in gas production,which behavior does follow by the order of capillary coating>pore coating>pore filling>capillary filling.From the analysis of t1/2,some interesting results are suggested as follows:(1) there is a "switch" value(the"switch"absolute permeability) for laboratory-scale hydrate dissociation in porous media,the absolute permeability has almost no influence on the gas production behavior when the permeability exceeds the "switch" value.In this study,the "switch" value of absolute permeability can be estimated to be between 10 and 50 md.(2) An optimum value of initial effective water saturation Sw,e exists where hydrate dissociation rate reaches the maximum and the optimum value largely coincides with the value of irreducible water saturation S wr,e.For the case of Sw,Swr,e,there are different control mechanisms dominating the process of hydrate dissociation and gas production.  相似文献   

15.
16.
This study investigates the rheological properties of surface-modified nanoparticles-stabilized CO2 foam in porous media for enhanced oil recovery (EOR) applications. Due to the foam pseudo-plastic behavior, the foam apparent viscosity was estimated based on the power law constitutive model. The results show that foam exhibit shear-thinning behavior. The presence of surface-modified silica nanoparticles enhanced the foam bulk apparent viscosity by 15%. Foam apparent viscosity in the capillary porous media was four times higher than that in capillary viscometer, and foam apparent viscosity increased as porous media permeability increases. The high apparent viscosity of the surface-modified nanoparticles-stabilized foam could result in effective fluid diversion and pore blocking processes and enhance their potential applications in heterogeneous reservoir.  相似文献   

17.
Faradaic reactions including charge transfer are often accompanied with diffusion limitation inside the bulk. Conductive two-dimensional frameworks (2D MOFs) with a fast ion transport can combine both—charge transfer and fast diffusion inside their porous structure. To study remaining diffusion limitations caused by particle morphology, different synthesis routes of Cu-2,3,6,7,10,11-hexahydroxytriphenylene (Cu3(HHTP)2), a copper-based 2D MOF, are used to obtain flake- and rod-like MOF particles. Both morphologies are systematically characterized and evaluated for redox-active Li+ ion storage. The redox mechanism is investigated by means of X-ray absorption spectroscopy, FTIR spectroscopy and in situ XRD. Both types are compared regarding kinetic properties for Li+ ion storage via cyclic voltammetry and impedance spectroscopy. A significant influence of particle morphology for 2D MOFs on kinetic aspects of electrochemical Li+ ion storage can be observed. This study opens the path for optimization of redox active porous structures to overcome diffusion limitations of Faradaic processes.  相似文献   

18.
The objective of this study was to understand fluid heat and mass transfer processes in porous media with different pore structures. High-resolution Magnetic Resonance Imaging was used to measure fluid flow velocity and temperature maps in porous media. Firstly, three orthogonal velocity components (V x , V y , and V z ) of single phase flow measurement were evaluated. The flow distribution in porous media is rather heterogeneous, and it is consistent with heterogeneous pore structure, and the velocity in large pore is high. Then we presented initial results from the extension of this work to two-phase flow. The CO2 channeling phenomena were obvious. And the CO2 velocity was calculated from saturation of water. Finally, the linearity relationship between temperature and the MRI parameter was determined for porous media, and we measured the temperature distribution of water saturated porous media. The study provides useful data for heat and mass process during CO2 storage.  相似文献   

19.
The permeability in the methane hydrate reservoir is one of the key parameters in estimating the gas production performance and the flow behavior of gas and water during dissociation. In this paper, a three-dimensional cubic pore-network model based on invasion percolation is developed to study the effect of hydrate particle formation and growth habit on the permeability. The variation of permeability in porous media with different hydrate saturation is studied by solving the network problem. The simulation results are well consistent with the experimental data. The proposed model predicts that the permeability will reduce exponentially with the increase of hydrate saturation, which is crucial in developing a deeper understanding of the mechanism of hydrate formation and dissociation in porous media.  相似文献   

20.
Protein A affinity chromatography is the standard purification method for isolation of therapeutic antibodies. Due to improvements in expression technology and optimization of fermentation, culture supernatants with high antibody content must be processed. Recently protein A affinity media with improved adsorption characteristics have been developed. The agarose media MabSelect Xtra and MabSelect SuRe are recent developments of the existing protein A affinity medium MabSelect. MabSelect Xtra is designed to exhibit a higher binding capacity for IgG, and MabSelect SuRe is functionalized with an alkaline stabilized protein A. ProSep-vA Ultra is a porous glass medium with a pore size of 70 nm, also developed to improve the binding capacity. Adsorption was measured in a finite and infinite bath. Mass transfer in these systems could be well described by a model including film and pore diffusion. Mass transfer parameters were used to accurately predict IgG breakthrough in packed bed mode. The dynamic binding capacity of all three media did not change when residence time was at least 4 min. All three media are suited for capture of feed stocks with high antibody content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号