首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
121Sb Mössbauer spectra of the title complexes, whose isomer shifts are intermediate between the organoantimony(III) and organoantimony(V) compounds, suggest that considerable electrons are donated from hydrido ligand and Fe(CO)4 fragments to the antimony atom.  相似文献   

2.
We report the electrochemical and chemical synthesis of the first isolable iron carbonyls obtained directly from an {Fe4S4}-cluster and carbon monoxide: the structure of one product of chemical reduction, [Fe3S(CO)9]2−, had been determined by X-ray crystallography.  相似文献   

3.
4.
The title compound, [{Na(H2O)3}2{Ru(dmso)3}2(MoO4)3]·3H2O, has been obstructure was determined by single-crystal X-ray diffraction method. The crystal crystallizes in the triclinic system, space group P1 with a = 12.3333(3), b = 12.6289(3), c = 32.0284(14)(A), α =79.873(7), β = 87.549(9), y = 64.500(4)°, V = 4429.5(2) (A)3, Z = 4, Mr = 1358.85, Dc = 2.038g/cm3, F(000) = 2696 and μ = 1.874 mm-1. The compound contains a novel pentanuclear triangle bipyramidal core, [{ Ru(dmso)3 } 2(MoO4)3]2-, which consists of two { Ru(dmso)3 } 2+ fragments and three {μ2-MoO4}2- units. Furthermore, the dmso ligands bridge the pentanuclear [Ru2Mo3] core and two [Na(H2O)3]+ fragments together, forming a neutral heptanuclear ruthenium- and sodiumcontaining polyoxomolybdate.  相似文献   

5.
4-Tropone)Fe(CO)3 and (η4-isoprene)Fe(CO)3 form separable diastereoisomers on substitution of CO by (+)-(neomenthyl)PPh2. In the tropone complex, diastereoisomer interconversion occurs by a 1,3-metal shift. The absolute configuration of the isoprene complex has been determined crystallographically.  相似文献   

6.
1INTRoDUCTIONMolybdenum(Tungsten)-copper-sulfurandmolydenum(tungsten)-iron-sulfurcompoundshavebeenstudiedextensivelybecauseoftheirconnectionwithbiologicalprocesses[l,2j.Someheterotrimetalliccomplexeshavebeensynthesized,suchas[NEt'jtPh,p)sAgSzMoSzCu(CN))and[NEt'jtPh,P),AgS,MooCu(CN)jt3i,[l(CH,CH,)'j(PPh,)2{AgS2WS2Cu}(CN)jt4i,[(CH,CH2)4j(PPh,)2{AgS,WOCu}(CN)j('3,butheterotrimetal1iccomplexescontainingtungsten,copper,andironatomshaveseldombeenreported.Onecomplexofthiskindha…  相似文献   

7.
Developments in the chemistry of weakly coordinating anions enabled isolation of numerous unique metal complexes with unusual ligands. An important example is the family of metal-Fe(CO)5 complexes. In the current paper we present synthesis and thorough characterization of the first truly homoleptic {Cu[Fe(CO)5]2}+ cation obtained as a salt of weakly coordinating [Al(ORF)4] (RF=C(CF3)3) anion. TGA/DSC/MS study show that its decomposition becomes noticeable only above 110 °C, thus it can be stored as powder in air-free conditions for months. The crystal structure of {Cu[Fe(CO)5]2}+ shows strong asymmetry of the cation and very short Cu-CO bonds in comparison to analogous {M[Fe(CO)5]2}+ where M=Ag or Au. Characterization is complemented with analysis of vibrational spectra and extensive DFT calculations which give insight into the energetics of Cu+-Fe(CO)5 systems. Our results show that {Cu[Fe(CO)5]2}+ is homoleptic only as salt of [Al(ORF)4]. Furthermore, in the presence of additional, even weakly basic ligands, the Cu+-Fe(CO)5 bond strength decreases what may contribute to the complex's instability in liquid SO2 or in the presence of [SbF6]. These conclusions point at the key role of selection of proper anion and solvent in stabilization of these types of complexes.  相似文献   

8.
The title compound K3[HO{VO(O2)2}2]·H2O has been synthesized and its crystal structure was determined by X-ray diffraction method. The crystal is of monoclinic, space group P21/c with a = 6.7078(3), b = 9.9539(6), c = 15.8182(9)A, β = 93.702(3)0, V = 1053.96(10)A3, Mr = 414.20, Dc = 2.610 g/cm3, Z = 4, λ(MoKα) = 0.71073A, F(000) = 808, μ = 3.014 mm-1, the final R = 0.0173 and wR = 0.0466 for 2178 observed reflections with I > 2σ(I). X-ray diffraction reveals that the coordination polyhedra of V atoms are not chemically equivalent: the V(1) and V(2) polyhedra can be described as pentagonal pyramid and pentagonal bipyramid, respectively.  相似文献   

9.
10.
11.
The oxidation of the [Fe(CO)4]2– dianion with Ag+ salts occurs through a particularinner-sphere mechanism, which involves an intermediate cascade of silver clusters stabilized by Fe(CO)4 ligands. The last detectable Ag-Fe cluster of the sequence is the [Ag13{-Fe(CO)4}8]3– trianion, which has been selectively obtained by using ca. 1.7 equivalents of Ag+ per mole of [Fe(CO)4]2–. The [Ag13{-Fe(CO)4}8]3–- trianion has been isolated in a crystalline state with several quaternary cations, and has been characterized by X-ray diffraction studies of its bis(triphenylphosphine)iminium salt. [N(PPh3)2]3 [Ag13{ 3-Fe(CO)4}8]·2(CH3)2CO, monoclinic, space group P21 (No.4),a = 16.284(2) Å,b =18.767(5) Å,c = 25.905(4) Å, = 90.46(1)°,V = 7916(3) Å3,Z = 2,R = 0.0324. The molecular structure of the anion consists of a centered cuboctahedron of silver atoms with the triangular faces capped by Fe(CO)4 units. Chemical reduction of ( Ag13{ 3-Fe(CO)4}8]3– affords the corresponding [Ag13{ 3-Fe(CO)4)8]4–, which in turn gives [Ag13{ 3-Fe(CO)4)8]5– and [Ag6{ 3-Fe(CO)4}4] upon further reduction. Electrochemical investigations confirm the reversibility of the [Ag13{ 3-Fe(CO)4}8]3–/4– redox change. Furthermore, in spite of some electrode poisoning effects, evidence of the existence of the [Ag13{ 3-Fe(CO)4}8]5– pentaanion was obtained. The yet structurally uncharacterized [Ag6{ 3-Fe(CO)4)4]2– dianion is quantitatively obtained by reaction of [Fe(CO)4]2– with ca. 1.5 equivalents of Ag+ or by addition of one equivalent of Ag+ to solutions of the [Ag5{Fe(CO)4}4]3– trianion. All attempts to isolate its quaternary salts as crystalline materials failed owing to formation of amorphous insoluble precipitates. The above series of 3-Fe(CO)4 octa-capped cuboctahedral Ag13 clusters can be envisioned as the Ag+ . Ag and Ag cryptates of the [Ag12{}3-Fe(CO)4}8]4– cryptand. respectively.Dedicated to Prof L. F. Dahl on his 65th birthday.  相似文献   

12.
The diiron ynamine complex [Fe2(CO)7{-C(Ph)C(NEt2)}] (1) reacts with the diphenylbuta-1, 4-diyne, PhCC-CCPh, in refluxing hexane to yield three isomer complexes [Fe2(CO)6{C(Ph)C(NEt2)C(Ph)C(C2Ph}] (2a), [Fe2(CO)6{C(Ph)C(NEt2)C(C2Ph)C(Ph)}] (2b), and [Fe2(CO)6{NEt2)C(Ph)C(C2)C(Ph)}] (2c) All three compounds were identified by their1H NMR spectra. Compounds2a and2c were characterized by single crystal X-ray diffraction analyses. Crystal data: for2a: space group = P21/n,a = 17.873(1) Å, = 18.388(6) Å,c = 9.429(3) Å = 91.99(3)°,Z = 4.3751 reflections,R = 0.044; for2c: space group = P21/n,a = 40.58(2) å,b = 12.101(9) Å,c = 12.551(5) Å, = 94.29(7)°,Z = 8.4723 reflection,R = 0.076. Complexes2a and2b result from a [2 + 2] cycloaddition between one of the CC triple bonds of the diyne ligand and the FeC carbene bond, whereas2c results from insertion of one of the CC group into the bridging carbene. Addition of [Fe2(CO)9] on2a gave two major products, the tripledecker [Fe3(CO)8{C(Ph)C(NEt2)C(C2Ph)}], (3 and a tetrairon cluster [Fe4(CO)11{C(Ph)C(NEt2)C(Ph)C(C2Ph)}] (4). Both compounds were characterized by single crystal diffraction analyses. Crystal data: for3: space group = P21/n,a = 12.039(3) Å,b = 18.046(3) å,c = 15.270(2) Å, = 90.11(2)°,Z = 4, 1430 reflections,R = 0.067; for4 space group = C2/c,a = 18.633(3) Å,b = 21.467(1)_Å,c = 20.742(2) Å, = 115.03(8)°,Z = 8.992 reflections, R = 0.076. Complex4 is based on a spiked triangular cluster with the alkynyl triple bond attached in 3-parallel mode on the triangular grouping.  相似文献   

13.
The new Mo/Se clusters [Mo33-Se)(μ2-Se2)3{N(SePPh2)2}3]Br (1) and [Mo33-Se)(μ2-Se2)3{Se2P(OCH2CH3)2}3]Br (2) have been synthesized by the selective substitution of the bromo ligands in the starting material [PPh4]2[Mo33-Se)(μ2-Se2)3Br6] with the selenoorgano bidentate ligands [N(SePPh2)2] and [Se2P(OEt)2]. The complexes have been characterized in solution by 31P- and 77Se-NMR spectroscopy and in the solid state by single crystal X-ray diffraction; the same cation structures are present both in solution and in the solid state. Crystallographic data for 1: [Mo33-Se)(μ2-Se2)3{N(SePPh2)2}3]Br·3 CH2Cl2, C72H60BrMo3N3P6Se13·3 CH2Cl2, trigonal, space group R3, a=21.299 (10) Å, c=38.433 (27) Å, V=15 100 (15) Å3, T=−120 °C, Z=6; crystallographic data for 2: Mo33-Se)(μ2-Se2)3{Se2P(OCH2CH3)2}3]Br, C12H30BrMo3P3O3Se13, monoclinic, space group P21/n, a=13.404 (2) Å, b=22.732 (4) Å, c=13.932 (3) Å, β=113.134 (3)°, V=3 903.7(12) Å3, T=−120 °C, Z=4. © 2000 Académie des sciences / Éditions scientifiques et médicales Elsevier SASphosphine ligands / amine ligands / phosphate ligands / selenium / molybdenum cluster / 77Se-NMR spectroscopy  相似文献   

14.
The trinuclear Mo cluster [Mo3(3–X)(2–Se2)3{S2P-(OEt)2}3]Cl (X=0.65S+0.35Se) (1) has been synthesised by reacting MoCl3·3H2O with ZnSe and [Me4N][S2P(OEt)2] in an EtOH/HCl medium. Reduction of (1) by Ph3P in the presence of [Me4N]-[S2P(OEt)2] and pyridine gave [Mo3(3–X)(2–Se)3 {S2P(OEt)2}4(py)] (X=0.65S+0.35Se, py=C5H5N) (2). Complex (2) was, in turn, converted into [Mo3(3–X)(2–SeS)3{S2P(OEt)2}3]I (X=0.65S+0.35Se) (3) by treatment with H2S and I2. The structures of complexes (1), (2) and (3) were established by X-ray crystallography.  相似文献   

15.
[(C2H5)4N]2{Fe4S4[S2CN(C2H5)2]4}的晶体和分子结构   总被引:1,自引:0,他引:1  
[(C2H5)4N]2{Fe4S4[S2CN(C2H5)2]4}单晶样品在Nicolet-R3四圆衍射仪上收集X射线衍射数据. 分析结果给出其晶胞参数: a=22.125(6), b=11.313(3),c=25.053A; β=118.05(2)°; V=5534.19A^3, Z=4, 空间群Cc. 衍射数据经过Lρ因子和经验吸收效应校正. 分子中铁原子的位置从三维Patterson图上得到. 接着经过若干轮Fourier和差Fourier电子云密度合成, 发现全部其余非氢原子的坐标.氢原子位置根据理论模型计算. 结构修正最后收敛至R=0.073, Rw=0.069. 标题化合物是由[(C2H5)4N]^+和{FeS4[S2CN(C2H5)2]}^2^-组成的离子型化合物. 结构的主要特点表现在阴离子上, 而在阴离子中含有类立方烷型簇核Fe4S4. 该簇核中每个铁原子与五个硫原子配位, 其配位多面体构型均为畸变的四方锥.  相似文献   

16.
Reaction of[(η5-C5H5)(CO)Fe{μ-C(CF3)C(CF3)SMe}2Fe(CO)(η5-C5H5)] with Fe3(CO)12 leads to an exchange of ligands (hexafluorobut-2-yne, cyclopentadienyl or sulphur) between the metal centres and the formation of several new complexes.Two of These, [(η5-C5H5)2Fe3(CO)33-CO)(μ-CO)(CF3C2CF3)] and [{μ-CF3CC (CF3)S Fe(CO)3}2], have been shown by X-ray diffraction to contain μ32-| CF3C2CF3 units bridging Fe3 and Fe2S triangles, respectively.  相似文献   

17.
The reaction of UI3 in THF with KTpMe2 and the subsequent addition of [K2(C8H6{SiiPr3-1,4}2)] or [K2(C8H4{SiiPr3-1,4}2)] yields dark red [U(κ3-TpMe2)(C8H6{SiiPr3-1,4}2)] 1 and purple [U(κ3-TpMe2)(C8H4{SiiPr3-1,4}2)] 2, respectively. The 1H NMR of 1 at room temperature suggests a rigid structure, whereas 2 is fluxional in solution on the NMR timescale. 1 is unreactive towards CO, CO2 and MeNC under mild conditions; density functional calculations were used to compare the electronic and steric effects of the TpMe2 vs. Cp* ligands in mixed sandwich complexes of the type [U(L)(C8H6{SiH3-1,4}2)] (L = Cp* or (κ3-TpMe2)). On heating at 80 °C, 1 reacts with excess MeNC to yield [U(C8H6{SiiPr3-1,4}2)(κ2-dmpz)21-CNMe)] 3. The structures of 13 have been determined by single crystal X-ray diffraction.  相似文献   

18.
The di-hydride di-anion [H(2)Fe(4)(CO)(12)](2-) has been quantitatively obtained by protonation of the previously reported mono-hydride tri-anion [HFe(4)(CO)(12)](3-) in DMSO and structurally characterised in its [NEt(4)](2)[H(2)Fe(4)(CO)(12)] salt. It shows some subtle but yet significant differences in the stereochemistry of the ligands in comparison to the heavier Ru(4) and Os(4) congeners. The study of the reactivity of these [H(4 -n)Fe(4)(CO)(12)](n-) (n = 2,3) species allowed the serendipitous isolation and structural characterization of the new pentanuclear [HFe(5)(CO)(14)](3-) mono-hydride tri-anion. Attempts to obtain the latter in better yields led to the discovery of intermolecular CO/H(-) mutual exchange reactions and isolation and structural characterization of the [Fe(DMF)(4)][Fe(4)(CO)(12)(μ(5)-η(2)-CO)(μ-H)](2)·0.5CH(2)Cl(2) and [M(+)][Fe(4)(CO)(12)(μ(4)-η(2)-CO)(μ-H)](-) (M = K, Cs) adducts, the former containing an unprecedented isocarbonyl group. The isolation of new tetranuclear and, above all, pentanuclear hydridocarbonylferrates indicates that it is possible to further expand the chemistry of homoleptic Fe carbonyl species.  相似文献   

19.
Cp2Cr2(CO)4( - 2 - P2), 1, reacts with one molar equivalent of Fe2(CO)9 in THF to yield the mono- and di-iron complexes, Cp2Cr2(CO)4P2[Fe(CO)4], 2, (16.5% yield) and Cp2Cr2(CO)4P2[Fe(CO)4]2, 3, (16.9% yield), as dark magenta brown and dark greenish brown crystals, respectively. Both complexes were characterized by single-crystal X-ray diffraction analysis. Crystal data –2: space group =P21/c,a=17.024(1) Å,b=8.180(1) Å,c=30.891(2) Å, =100.953(5)°,V=4223.4(7)Å3,Z=8, 3743 observed reflections,R F=0.033; 3: space group P1,a=10.209(2) Å,b=10.212(2) Å,c=15.989(3) Å, =106.93(1)°, =91.87(1)°, =119.50(1)°,V=1356.5(4) Å3,Z=2, 3489 observed reflections,R F=0.029.  相似文献   

20.
1 INTRODUCTION Though the investigation on chemistry of tran- sition metal-peroxy complexes has been extensively carried out, up to now, only four structures of purely inorganic dimeric peroxovanadates have been deter- mined by single-crystal X-ray meth…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号