首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
We report the first example of an intercalation compound based on the nitrogen framework in which lithium can be intercalated and deintercalated. A comparison of the structural and electrochemical properties of the ternary lithium cobalt, nickel and copper nitrides is performed. Vacancy layered structures of ternary lithium nitridocobaltates Li3−2xCoxN and nitridonickelates Li3−2xNixN with 0.10  x  0.44 and 0.20  x  0.60, respectively, are proved to reversibly intercalate Li ions in the 1 V–0.02 V potential range. These host lattices can accommodate up to 0.35 Li ion par mole of nitride. Results herein obtained support Li insertion in vacancies located in Li2N layers while interlayer divalent cobalt and nickel cations are reduced to monovalent species. No structural strain is induced by the insertion–extraction electrochemical reaction which explains the high stability of the capacity in both cases. For the Li1.86Ni0.57N compound, a stable faradaic yield of 0.30 F/mol, i.e. 130 mAh/g, is maintained at least for 100 cycles. Conversely, the ternary copper nitrides corresponding to the chemical composition Li3−xCuxN with 0.10  x  0.40 do not allow the insertion reaction to take place due to the presence of monovalent copper combined with the lack of vacancies to accommodate Li ions. In the latter case, the discharge of the lithium copper nitrides is not reversible.  相似文献   

2.
The electrochemical properties of 0.95LiMn0.5Ni0.5O2·0.05Li2TiO3 have been investigated as part of a study of xLiMO2·(1−x)Li2MO3 electrode systems for lithium batteries in which M=Co, Ni, Mn and M=Ti, Zr, Mn. The data indicate that the electrochemically inactive Li2TiO3 component contributes to the stabilization of LiMn0.5Ni0.5O2 electrodes, which improves the coulombic efficiency of Li/xLiMn0.5Ni0.5O2·(1−x)Li2TiO3 cells for x<1. The 0.95LiMn0.5Ni0.5O2·0.05Li2TiO3 electrodes provide a rechargeable capacity of approximately 175 mAh/g at 50 °C when cycled between 4.6 and 2.5 V; there is no indication of spinel formation during electrochemical cycling.  相似文献   

3.
Lithium-nickel-manganese oxides (Li1+x(Ni1/2Mn1/2)1−xO2, x=0 and 0.2), having different cationic distributions and an oxidation state of Ni varying from 2+ to 3+, were formed under a high-pressure (3 GPa). The structure and cationic distribution in these oxides were examined by powder X-ray diffraction, infrared (IR) and electron paramagnetic resonance (EPR) in X-band (9.23 GHz) and at higher frequencies (95 and 285 GHz). Under a high pressure, a solid-state reaction between NiMnO3 and Li2O yields LiNi0.5Mn0.5O2 with a disordered rock-salt type structure. The paramagnetic ions stabilized in this oxide are mainly Ni2+ and Mn4+ together with Mn3+ (about 10%). The replacement of Li2O by Li2O2 permits increasing the oxidation state of Ni ions in lithium-nickel-manganese oxides. The higher oxidation state of Ni ions favours the stabilization of the layered modification, where the Ni-to-Mn ratio is preserved: Li(Li0.2Ni0.4Mn0.4)O2. The paramagnetic ions stabilized in the layered oxide are mainly Ni3+ and Mn4+ ions. The disordered and ordered phases display different intercalation properties in respect of lithium. The changes in local Ni,Mn-environment during the electrochemical reaction are discussed on the basis of EPR and IR spectroscopy.  相似文献   

4.
Cu3V2O8 nanoparticles with particle sizes of 40–50 nm have been prepared by the co‐precipitation method. The Cu3V2O8 electrode delivers a discharge capacity of 462 mA h g?1 for the first 10 cycles and then the specific capacity, surprisingly, increases to 773 mA h g?1 after 50 cycles, possibly as a result of extra lithium interfacial storage through the reversible formation/decomposition of a solid electrolyte interface (SEI) film. In addition, the electrode shows good rate capability with discharge capacities of 218 mA h g?1 under current densities of 1000 mA g?1. Moreover, the lithium storage mechanism for Cu3V2O8 nanoparticles is explained on the basis of ex situ X‐ray diffraction data and high‐resolution transmission electron microscopy analyses at different charge/discharge depths. It was evidenced that Cu3V2O8 decomposes into copper metal and Li3VO4 on being initially discharged to 0.01 V, and the Li3VO4 is then likely to act as the host for lithium ions in subsequent cycles by means of the intercalation mechanism. Such an “in situ” compositing phenomenon during the electrochemical processes is novel and provides a very useful insight into the design of new anode materials for application in lithium‐ion batteries.  相似文献   

5.
Lithium insertion reactions of the lithium spinels Fe[Li0.5Fe1.5]O4, Li0.5Zn0.5[Li0.5Mn1.5]O4 and Li [Fe0.5Mn1.5]O4 by n-butyl lithium or electrochemically yield Li2.5Fe2.5O4, Li2Zn0.5Mn1.5O4, and Li2 Fe0.5Mn1.5O4, respectively. It is shown that the [B2]O4 framework of the A[B2]O4 spinel structure remains intact upon lithium insertion, and provides a three-dimensional interstitial pathway for Li+ ion diffusion. Lithium insertion is completely reversible in the normal lithium spinel LiFe0.5Mn1.5O4; delithiation of Li2.5Fe2.5O4 results in Li1.5Fe2.5O4 and none of the inserted lithium may be removed from the mixed lithium spinel Li2Zn0.5Mn1.5O4. Physicochemical properties including electrical resistivity, magnetic susceptibility, and Mössbauer spectra of the hosts and their lithiated analogs are discussed.  相似文献   

6.
《Solid State Sciences》2007,9(3-4):310-317
The mechanism of the chemical and electrochemical alkali metal intercalation reactions in β-HfNCl has been investigated through electrochemical potential spectroscopy (EPS), in-situ powder X-ray diffraction during electrochemical intercalation and room temperature chemical intercalation experiments. EPS experiments in lithium cells reveal the presence of a plateau, at 1.8 V vs. Li+/Li0 accounting for ca. 0.14 mol Li, that indicates the formation of a new intermediate phase, and then a gradual decrease of potential with composition that extends up to very high lithium contents (ca. 1.1 per formula), consistent with the formation of a solid solution. Sodium electrochemical intercalation experiments showed a relatively similar behaviour with a plateau at 1.4 V vs. Na+/Na0, corresponding to ca. 1.7 V vs. Li+/Li0. In-situ monitored powder X-ray diffraction electrochemical intercalation experiments showed that the electrolyte solvent (ethylene carbonate/dimethyl carbonate, EC/DMC or propylene carbonate, PC) co-intercalated with the alkaline atom. This leads to a large expansion of the interlayer spacing that reaches a value of 21.06 Å in the lithium co-intercalated phase with EC/DMC, Lix(EC/DMC)yHfNCl, and 22.01 Å in the sodium co-intercalated phase with PC, Nax(PC)yHfNCl. Chemical intercalation using naphthyl-sodium solutions in tetrahydrofuran (THF) leads to solvent-free, multiple-phase samples showing in different proportions the pristine and the superconducting stage 2 and stage 1 phases. The composition of the intercalated samples depends on the pristine sample, the concentration of the naphthyl-sodium solution, the ratio Na:HfNCl and the reaction time. Pristine samples exhibiting low lithium intercalation degree upon electrochemical reduction gave the second stage as the major phase when treated with short reaction times or using low Na:HfNCl ratios, coexisting either with the host or with the first stage phase, whereas stage 1 is obtained as the major phase from pristine samples showing high electrochemical capacities. The staging behaviour and the multiphase nature of these samples account for the wide superconducting transitions and the different critical temperatures observed in these superconductors.  相似文献   

7.
Ti-based anode materials with the nominal compositions Li4Ti5CuxO12 + x (x = 0, 0.075, 0.15, 0.3, 0.6, 1.20 and 1.67) were synthesized at 800 °C by a solid-state reaction process. X-ray diffraction analysis indicated that the sintered samples were composed of intergrown spinel-type Li4Ti5O12 and Li2CuTi3O8, and a small amount of Li2O. Scanning electron microscopy, electrical resistance measurement and galvanostatic cell cycling were also employed to characterize the structure and properties of the double spinel samples. It is proposed that the first lithiation of the component Li2CuTi3O8 leads to the in situ production of Cu that can significantly improve the rate performance of Li4Ti5CuxO12 + x. The optimal nominal composition is Li4Ti5Cu0.15O12.15.  相似文献   

8.
The galvanostatic intermittent titration technique is used to study lithium transport in the LiM y Mn2 − y O4 compounds with a spinel structure intended for application as cathodic materials in lithium-ion and lithium-polymer batteries. Equilibrium intercalation isotherms of the Li x Mn2O4 and Li x Mn1.95Cr0.05O4 compounds and also their diffusion characteristics are determined at 25°C as dependent on lithium content x, 0 < x < 1. The diffusion coefficient of lithium varies in a complex way in the range of 10−10 to 10−12 cm2/s under variation of the electrode composition.  相似文献   

9.
Effects of heteroatoms on doped LiFePO4/C composites   总被引:1,自引:0,他引:1  
A series of supervalent cation doped Li1–x M0.01Fe0.99PO4/C composites (M?=?Ti, Zr, V, Nb, and W) were synthesized by solid-state reaction. The effects of the heteroatoms were studied by X-ray diffraction, cyclic voltammetry, and electrochemical impedance measurement. After doping, the lattice structure of LiFePO4 is not destroyed and the reversibility of lithium ion intercalation and deintercalation is improved. The diffusion coefficient of lithium ions depends on the radius of the heteroatoms. As the radius of the heteroatom is larger, the diffusion coefficient increases.  相似文献   

10.
The behavior of the variable-composition spinel Li1 + x Mn2 ? x O4 is examined in repeated cycles consisting of lithiation in 0.2 M LiOH and delithiation in 0.3 M HNO3. For 0 < x < 0.33, delithiation is accompanied by the redox reaction 2Mn3+ → Mn4+ + Mn2+ and Li+ ? H+ ion exchange. The spinel undergoes partial conversion into λ-□MnO2. Vacancies (□) build up at the 8a sites of the spinel structure. Mn2+ ions pass into the solution, and, accordingly, the spinel dissolves. Lithiation is accompanied by the redox reaction 4Mn4+ → 3Mn3+ + Mn7+ and ion exchange, and the proportion of vacancies □ at the 8a sites of the spinel structure decreases. The spinel undergoes partial dissolution because of Mn2+ and MnO ? 4 ions passing into the solution. The Li+ selectivity of the spinel is the property of the crystallite core. The crystallite surface is capable of sorbing Na+ ions.  相似文献   

11.
The reaction mechanism of cell Li/PbS has been studied with coulombic titration, cyclic voltammetry and X-ray diffraction methods. It was found that in the first stage of discharge (0< y ≤1.5), the intercalation of lithium into lead sulfide took place. The X-ray diffraction patterns showed that the main crystalline structure of PbS remained unchanged after lithiation, and the lithium intercalated probably locates in the center of the cubic-interspace of the crystal. The intercalation free energy of Li into PbS forming LiPbS was found to be ?300.48 KJ·mol?1 (at 25°C). The chemical diffusion coefficient of lithium in LiyPbS (0<y≤1) was determined by electrochemical method to be about 10?11 cm2S-1.  相似文献   

12.
Lithium has been extracted from the layered compound LiVO2 by chemical oxidation with bromine. Previous X-ray data have shown that in Li1−xVO2 lithium extraction beyond x ≈ 0.33 is accompanied by migration of one-third of the vanadium ions into the lithium-deficient layer to stabilize the structure; little information about the location of the lithium ions could be gathered from this data. The neutron diffraction data presented in this paper show that at a composition Li0.22VO2, determined by atomic absorption spectroscopy, the residual lithium ions are distributed over the octahedral sites of the original lithium layer; the possibility that a small fraction of the lithium ions partially occupy the tetrahedral sites in this layer cannot be discounted. No significant occupation by lithium of the tetrahedral or octahedral vacancies in the vanadium-rich layer could be detected.  相似文献   

13.
The possibility of directly using the natural mineral pyrophyllite for the efficient generation of Li+ intercalation current is demonstrated experimentally. The dependences of changes in the Gibbs energy and the entropy of the intercalation reaction on the degree of the guest lithium load are analyzed. A distinctive feature of the intercalation kinetics in Li x Al2(OH)2[Si2O5]2 is the anomalously high diffusion coefficients of lithium cations at x > 0.3.  相似文献   

14.
Complex vanadium and titanium oxides modified by copper ions are studied by the electrochemical and ESR methods. Oxides Cu x V2?y Ti y O5?δ·nH2O (0<y<1.33) have a layered structure and oxides Cu x Ti1?y V y O5+δ·nH2O (0<y<0.25), an anatase structure. The intercalation of cations Cu2+ into the hydrates leads to oxidation of V4+. According to ESR data, V4+ exists in the oxides in the form of VO2+ and an octahedral surround of oxygen (V4+?O6), respectively. The electroreduction of ions of d-elements and chemisorbed oxygen in the oxides is analyzed. The intercalation of cations Cu2+ alters the content of V4+ and the chemisorption ability of the oxides. Possible reasons for this phenomenon are discussed.  相似文献   

15.
6Li and 7Li MAS NMR spectra including 1D-EXSY (exchange spectroscopy) and inversion recovery experiments of fast ionic conducting Li2MgCl4, Li2-xCuxMgCl4, Li2-xNaxMgCl4, and Li2ZnCl4 have been recorded and discussed with respect to the dynamics and local structure of the lithium ions. The chemical shifts, intensities, and half-widths of the Li MAS NMR signals of the inverse spinel-type solid solutions Li2-xMIxMgCl4 (MI=Cu, Na) with the copper ions solely at tetrahedral sites and sodium ions at octahedral sites and the normal spinel-type zinc compound, respectively, confirm the assignment of the low-field signal to Litet of inverse spinel-type Li2MgCl4 and the high-field signal to Lioct as proposed by Nagel et al. (2000). In contrast to spinel-type Li2-2xMg1+xCl4 solid solutions with clustering of the vacancies and Mg2+ ions, the Cu+ and Na+ ions are randomly distributed on the tetrahedral and octahedral sites, respectively. The activation energies due to the various dynamic processes of the lithium ions in inverse spinel-type chlorides obtained by the NMR experiments are Ea=6.6-6.9 and ΔG*>79 KJ mol−1 (in addition to 23, 29, and 75 kJmol-1 obtained by other techniques), respectively. The largest activation energy of >79 KJ mol−1 corresponds to hopping exchange processes of Li ions between the tetrahedral 8a sites and the octahedral 16d sites. The smallest value of 6.6-6.9 KJ mol−1, which was derived from the temperature dependence of both the spin-lattice relaxation times T1 and the correlation times τC of Litet, reveals a dynamic process for the Litet ions inside the tetrahedral voids of the structure, probably between fourfold 32e split sites around the tetrahedral 8a site.  相似文献   

16.
A two-step topotactic route is used to construct lithium halide layers within a perovskite host. Initially RbLaNb2O7 is converted to (CuCl)LaNb2O7 by ion exchange and then reductive intercalation with n-butyllithium is used to form (LixCl)LaNb2O7. The copper metal byproduct from the reduction step is removed by treatment with iodine. Rietveld refinement of neutron powder diffraction data revealed that an alkali-halide double layer with LiO2Cl2 tetrahedra forms between the perovskite slabs. Compositional studies indicate that the range for x in (LixCl)LaNb2O7 is 2?x<4, which appears consistent with the neutron data where only one lithium site was found in the structure.  相似文献   

17.
Isostructural Li2MTi6O14 (M=Sr, Ba) materials, prepared by a solid state reaction method, have been investigated as insertion electrodes for lithium battery applications. These titanate compounds have a structure that consists of a three-dimensional network of corner- and edge-shared [TiO6] octahedra, 11-coordinate polyhedra for the alkali-earth ions, and [LiO4] tetrahedra in tunnels that also contain vacant tetrahedral and octahedral sites. Electrochemical data show that these compounds are capable of reversibly intercalating four lithium atoms in a three-stage process between 1.4 and 0.5 V vs. metallic lithium. The electrodes provide a practical capacity of approximately 140 mAh/g; they are, therefore, possible alternative anode materials to the lithium titanate spinel, Li4Ti5O12. The lithium intercalation mechanism and crystal structure of Li2MTi6O14 (M=Sr, Ba) electrodes are discussed and compared with the electrochemical and structural properties of Li4Ti5O12. The area-specific impedance (ASI) of Li/Li2SrTi6O14 cells was found to be significantly lower than that of Li/Li4Ti5O12 cells.  相似文献   

18.
We report a method to eliminate the irreversible capacity of 0.4Li_2MnO_3·0.6LiNi_(0.5)Mn_(0.5)O_2(Li_(1.17)Ni_(0.25)Mn_(0.583)O_2) by decreasing lithium content to yield integrated layered-spinel structures.XRD patterns,High-resolution TEM image and electrochemical cycling of the materials in lithium cells revealed features consistent with the presence of spinel phase within the materials.When discharged to about 2.8 V,the spinel phase of LiM_2O_4(M=Ni,Mn) can transform to rock-salt phase of Li_2M_2O_4(M=Ni,Mn) during which the tetravalent manganese ions are reduced to an oxidation state of 3.0.So the spinel phase can act as a host to insert back the extracted lithium ions(from the layered matrix) that could not embed back into the layered lattice to eliminate the irreversible capacity loss and increase the discharge capacity.Their electrochemical properties at room temperature showed a high capacity(about 275 mAh g~(-1) at 0.1 C) and exhibited good cycling performance.  相似文献   

19.
Nanocrystalline manganese substituted lithium ferrites Li0.5Fe2.5−xMnxO4 (2.5≤x≥0) were prepared by sol-gel auto-combustion method. X-ray diffraction patterns revealed that as the concentration of manganese increased, the cubic phase changed to tetragonal. Magnetic properties were measured by hysteresis loop tracer technique. All the compositions indicated ferrimagnetic nature. The surface morphology of all the samples was studied by using scanning and transmission electron microscopy. The substitution of manganese ions in the lattice affected the structural as well as magnetic properties of spinels.  相似文献   

20.
The phase diagrams of the spinel systems Cd1?xCuxCr2S4, Cd1?xCuxCr2Se4, and Mn1?xCuxCr2S4 have been studied on the basis of X-ray powder photographs of quenched samples and high-temperature X-ray diffraction patterns. At room temperature the mutual solid solubilities of the metallic copper and the semiconducting cadmium and manganese spinels are only small (x < 0.05 and >0.95). The interchangeability, however, increases largely with increasing temperature. Complete series of mixed crystals, as in the Zn1?xCuxCr2X4 (X = S, Se) systems, however, are not formed. The solid solutions with x > 0.07 and <0.95, x > 0.095 and <0.90, and x > 0.36 and <0.87, respectively, formed at higher temperatures cannot be quenched to room temperature without decomposition. The unit cell dimensions of the spinel solid solutions studied obviously do not obey Vegard's rule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号