首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamics of the excited states of 1‐aminofluoren‐9‐one (1AF) and 1‐(N,N‐dimethylamino)‐fluoren‐9‐one (1DMAF) are investigated by using steady‐state absorption and fluorescence as well as subpicosecond time‐resolved absorption spectroscopic techniques. Following photoexcitation of 1AF, which exists in the intramolecular hydrogen‐bonded form in aprotic solvents, the excited‐state intramolecular proton‐transfer reaction is the only relaxation process observed in the excited singlet (S1) state. However, in protic solvents, the intramolecular hydrogen bond is disrupted in the excited state and an intermolecular hydrogen bond is formed with the solvent leading to reorganization of the hydrogen‐bond network structure of the solvent. The latter takes place in the timescale of the process of solvation dynamics. In the case of 1DMAF, the main relaxation pathway for the locally excited singlet, S1(LE), or S1(ICT) state is the configurational relaxation, via nearly barrierless twisting of the dimethylamino group to form the twisted intramolecular charge‐transfer, S1(TICT), state. A crossing between the excited‐state and ground‐state potential energy curves is responsible for the fast, radiationless deactivation and nonemissive character of the S1(TICT) state in polar solvents, both aprotic and protic. However, in viscous but strong hydrogen‐bond‐donating solvents, such as ethylene glycol and glycerol, crossing between the potential energy surfaces for the ground electronic state and the hydrogen‐bonded complex formed between the S1(TICT) state and the solvent is possibly avoided and the hydrogen‐bonded complex is weakly emissive.  相似文献   

2.
The photophysical properties of m- and p-cyano N-phenylpyrrole (m- and p-PBN) are compared. Both compounds show highly red-shifted and strongly forbidden emission in polar solvents, assigned to a charge transfer state. The forbidden nature is indicative of very weak coupling between the two pi-systems, and a twisted emissive structure is suggested (TICT state). Comparison to quantum chemical calculations indicates that the twisted structure possesses an antiquinoid distortion of the benzonitrile group, i.e., the central bonds in the ring are lengthened instead of shortened. m-PBN is the first meta compound which shows a CT emission assignable to a TICT state. It differs from p-PBN by a less exergonic formation of the CT state from the LE/ICT quinoid state. Consequently, it shows only single LE/ICT fluorescence in nonpolar alkane solvents, whereas p-PBN shows dual fluorescence in this solvent (LE/ICT and TICT).  相似文献   

3.
Ultrafast relaxation dynamics of the excited singlet (S(1)) state of Michler's ketone (MK) has been investigated in different kinds of solvents using a time-resolved absorption spectroscopic technique with 120 fs time resolution. This technique reveals that conversion of the locally excited (LE) state to the twisted intramolecular charge transfer (TICT) state because of twisting of the N,N-dimethylanilino groups with respect to the central carbonyl group is the major relaxation process responsible for the multi-exponential and probe-wavelength-dependent transient absorption dynamics of the S1 state of MK, but solvation dynamics does not have a significant role in this process. Theoretical optimization of the ground-state geometry of MK shows that the dimethylanilino groups attached to the central carbonyl group are at a dihedral angle of about 51 degrees with respect to each other because of steric interaction between the phenyl rings. Following photoexcitation of MK to its S1 state, two kinds of twisting motions have been resolved. Immediately after photoexcitation, an ultrafast "anti-twisting" motion of the dimethylanilino groups brings back the pretwisted molecule to a near-planar geometry with high mesomeric interaction and intramolecular charge transfer (ICT) character. This motion is observed in all kinds of solvents. Additionally, in solvents of large polarity, the dimethylamino groups undergo further twisting to about 90 degrees with respect to the phenyl ring, to which it is attached, leading to the conversion of the ICT state to the TICT state. Similar characteristics of the absorption spectra of the TICT state and the anion radical of MK establish the nearly pure electron transfer (ET) character of the TICT state. In aprotic solvents, because of the steep slope of the potential energy surface near the Franck-Condon (FC) or LE state region, the LE state is nearly nonemissive at room temperature and fluorescence emission is observed from only the ICT and TICT states. Alternatively, in protic solvents, because of an intermolecular hydrogen-bonding interaction between MK and the solvent, the LE region is more flat and stimulated emission from this state is also observed. However, a stronger hydrogen-bonding interaction between the TICT state and the solvent as well as the closeness between the two potential energy surfaces due to the TICT and the ground states cause the nonradiative coupling between these states to be very effective and, hence, cause the TICT state to be weakly emissive. The multi-exponentiality and strong wavelength-dependence of the kinetics of the relaxation process taking place in the S1 state of MK have arisen for several reasons, such as strong overlapping of transient absorption and stimulated emission spectra of the LE, ICT, and TICT states, which are formed consecutively following photoexcitation of the molecule, as well as the fact that different probe wavelengths monitor different regions of the potential energy surface representing the twisting motion of the excited molecule.  相似文献   

4.
The effect of different solvents on the fluorescent properties of 2-(dimethylamine)fluorene (DAF) were studied. In aprotic solvents we detected a strongly emissive intramolecular charge transfer (ICT) state that decayed by intersystem crossing to triplet. In proton-accepting solvents DAF exhibits in the excited state an intramolecular proton transfer. An ionized species is postulated, which simultaneously twists to a rotated conformation in the excited state. Thus, the specific solvent interactions supplement but do not replace the twist mechanism and accompany the charge transfer accepted as the prerequisite for twisted intramolecular charged transfer (TICT) state formation.  相似文献   

5.
The absorption and fluorescence spectra of fast violet-B (FVB) and benzanilide (BA) have been analysed in different solvents, pH and β-cyclodextrin. The inclusion complex of FVB with β-CD is investigated by UV–visible, fluorimetry, AM 1, FTIR and SEM. The absorption maximum of FVB (anilino substitution) is red shifted than that of BA, but the benzoyl substitution hardly changed the ground state structure of BA. Compared to BA, the emission maxima of FVB largely blue shifted in cyclohexane and aprotic solvents, but red shifted in protic solvents and the longer wavelength maxima in FVB is due to the intramolecular charge transfer (TICT). In BA, the normal emission originates from a locally excited state and the longer wavelength band due to intramolecular proton transfer in non-polar/aprotic solvents and in protic solvents it is due to TICT state. β-CD studies reveal that, FVB forms 1:2 complex from 1:1 complex and BA forms 1:2 complex with β-CD.  相似文献   

6.
By comparing fluorescence behaviour of carbazole derivatives carb-N-R with R = phenyl (CB). 4-cyanophenyl (CBN). 1-naphthyl (CIN) and 9′-phenanthryl (C9P) theoretical presuppositions for efficient TICT state population are exemplified. While CB fluoresces from a locally excited state, CBN, CIN and C9P exhibit exclusively TICT fluorescence in polar solvents, with an unusually lugh quantum yield.  相似文献   

7.
The photophysical behaviour of trans-methyl p-(dimethylamino) cinnamate (t-MDMAC) donor–acceptor system has been investigated by steady-state absorption and emission spectroscopy and quantum chemical calculations. The molecule t-MDMAC shows an emission from the locally excited state in non-polar solvents. In addition to weak local emission, a strong solvent dependent red shifted fluorescence in polar aprotic solvents is attributed to highly polar intramolecular charge transfer state. However, the formation of hydrogen-bonded clusters with polar protic solvents has been suggested from a linear correlation between the observed red shifted fluorescence band maxima with hydrogen bonding parameters (). Calculations by ab initio and density functional theory show that the lone pair electron at nitrogen center is out of plane of the benzene ring in the global minimum ground state structure. In the gas phase, a potential energy surface along the twist coordinate at the donor (–NMe2) and acceptor (–CH = CHCOOMe) sites shows stabilization of S1 state and destabilization S2 and S0 states. A similar potential energy calculation along the twist coordinate in acetonitrile solvent using non-equilibrium polarized continuum model also shows more stabilization of S1 state relative to other states and supports solvent dependent red shifted emission properties. In all types of calculations it is found that the nitrogen lone pair is delocalized over the benzene ring in the global minimum ground state and is localized on the nitrogen centre at the 90° twisted configuration. The S1 energy state stabilization along the twist coordinate at the donor site and localized nitrogen lone pair at the perpendicular configuration support well the observed dual fluorescence in terms of proposed twisted intramolecular charge transfer (TICT) model.  相似文献   

8.
The excited-state photophysics of formylperylene (FPe) have been investigated in a series of nonpolar, polar aprotic, and polar protic solvents. A variety of experimental and theoretical methods were employed including femtosecond transient absorption (fs-TA) spectroscopy with 130 fs temporal resolution. We report that the ultrafast intramolecular charge transfer from the perylene unit to the formyl (CHO) group can be facilitated drastically by hydrogen-bonding interactions between the carbonyl group oxygen of FPe and hydrogen-donating solvents in the electronically excited state. The excited-state absorption of FPe in methanol (MeOH) is close to the reported perylene radical cation produced by bimolecular quenching by an electron acceptor. This is a strong indication for a substantial charge transfer in the S(1) state in protic solvents. The larger increase of the dipole moment change in the protic solvents than that in aprotic ones strongly supports this observation. Relaxation mechanisms including vibrational cooling and solvation coupled to the charge-transfer state are also discussed.  相似文献   

9.
The electronic absorption and fluorescence spectra, quantum yields for fluorescence (Phi(f)) and trans --> cis photoisomerization (Phi(tc)), and fluorescence lifetimes of trans-4-(N-arylamino)-4'-cyanostilbenes (2H, 2Me, 2OM, 2CN, and 2Xy with aryl = phenyl, 4-methylphenyl, 4-methoxyphenyl, 4-cyanophenyl, and 2,5-dimethylphenyl, respectively), trans-4-(N-methyl-N-phenylamino)-4'-cyanostilbene (2MP), trans-4-(N,N-diphenylamino)-4'-cyanostilbene (2PP), trans-4-(N-methyl-N-phenylamino)-4'-nitrostilbene (3MP), and three ring-bridged analogues 2OMB, 2MPB, and 3MPB are reported. Whereas fluorescence and torsion of the central double bond account for the excited decay of the majority of these donor-acceptor substituted stilbenes in both nonpolar and polar solvents (i.e., Phi(f) + 2Phi(tc) approximately 1), exceptions are observed for 2OM, 3MP, and 3MPB in solvents more polar than THF and for 2Me and 2MP in acetonitrile as a result of the formation of a weakly fluorescent and isomerization-free twisted intramolecular charge transfer (TICT) state (i.e., Phi(f) + 2Phi(tc) < 1). The TICT state for 2OM, 2Me, and 2MP results from the torsion of the stilbenyl-anilino C-N single bond, but the torsion of the styryl-anilino C-C bond is more likely to be responsible for the TICT state formation of 3MP and 3MPB. In conjunction with the behavior of aminostilbenes 1, a guideline based on the values of Phi(f) and Phi(tc) for judging the importance of a TICT state for trans-stilbenes is provided. Accordingly, the TICT state formation is unimportant for the excited decay of trans-4-(N,N-dimethylamino)-4'-cyanostilbene (DCS). In contrast, our results support the previously proposed TICT state for trans-4-(N,N-dimethylamino)-4'-nitrostilbene (DNS).  相似文献   

10.
Photophysical studies on coumarin-7 (C7) dye in different protic solvents reveal interesting changes in the properties of the dye on increasing the solvent polarity (Deltaf; Lippert-Mataga solvent polarity parameter) beyond a critical value. Up to Deltaf approximately 0.31, the photophysical properties of the dye follow good linear correlations with Deltaf. For Deltaf > approximately 0.31, however, the photophysical properties, especially the fluorescence quantum yields (Phi(f)), fluorescence lifetimes (tau(f)) and nonradiative rate constants (k(nr)), undergo large deviations from the above linearity, suggesting an unusual enhancement in the nonradiative decay rate for the excited dye in these high polarity protic solvents. The effect of temperature on the tau(f) values of the dye has also been investigated to reveal the mechanistic details of the deexcitation mechanism for the excited dye. Studies have also been carried out in deuterated solvents to understand the role of solute-solvent hydrogen bonding interactions on the photophysical properties of the dye. Observed results suggest that the fluorescence of the dye originates from the planar intramolecular charge transfer (ICT) state in all the solvents studied and the deviations in the properties in high polarity solvents (Deltaf > approximately 0.31) arise due to the participation of a new deexcitation channel associated with the formation of a nonfluorescent twisted intramolecular charge transfer (TICT) state of the dye. Comparing present results with those of a homologous dye coumarin 30 (C30; Photochem. Photobiol., 2004, 80, 104), it is indicated that unlike in C30, the TICT state of the C7 dye does not experience any extra stability in protic solvents compared to that in aprotic solvents. This has been attributed to the presence of intramolecular hydrogen bonding between the NH group (in the 3-benzimidazole substituent) of the C7 dye and its carbonyl group, which renders an extra stability to the planar ICT state, making the TICT state formation relatively difficult. Qualitative potential energy diagrams have been proposed to rationalize the differences observed in the results with C7 and C30 dyes in high polarity protic solvents.  相似文献   

11.
The photochemical behavior of trans-4-(N-arylamino)stilbene (1, aryl = 4-substituted phenyl) in solvents more polar than THF is strongly dependent on the substituent in the N-aryl group. This is attributed to the formation of a twisted intramolecular charge transfer (TICT) state for those with a methoxy (1OM), methoxycarbonyl (1CO), or cyano (1CN) substituent but not for those with a methyl (1Me), hydrogen (1H), chloro (1Cl), or trifluoromethyl (1CF) substituent. On the basis of the ring-bridged model compounds 3-6, the TICT states for 1CN and 1CO result from the twisting of the anilino-benzonitrilo C-N bond, but for 1OM it is from the twisting of the stilbenyl-anilino C-N bond, both of which are distinct from the TICT states previously proposed for N,N-dimethylaminostilbenes.  相似文献   

12.
Reversible photocolor developments of viologens embedded in poly(N-vinyl-2-pyrrolidone) films, a typical polar aprotic solid matrix, were found to be affected by the kinds of viologen cation as well as the paired anion. The color developments in the corresponding low-molecular-weight solvents are connected closely to the solubility of viologens in these solvents; viologens are highly sensitive in the polar aprotic solvents in which they have poor solubilities, such as N-methyl-2-pyrrolidone and hexamethyl phosphoric triamide. These facts confirm the color-development mechanism consistings of electron transfer to the photoexcited viologen cation from the paired anion in polar aprotic solid matrices such as poly(N-vinyl-2-pyrrolidone).  相似文献   

13.
用稳态光谱以及皮秒瞬态荧光光谱研究了新型有机电致发光分子胆甾醇修饰羟基喹啉锌(Zn(ChQ)2)的聚集诱导荧光蓝移性质. 在Zn(ChQ)2的极性溶剂溶液中, 分子激发后会发生从胆甾醇基团向喹啉环的光致电子转移, 转移后形成了“扭转的分子内电荷转移态”作为新的荧光发射态. 而在薄膜态中, 分子由于聚集产生空间位阻, 不能形成新的荧光发射态, 相对于极性溶剂中, 产生聚集荧光增强效应, 荧光发射峰会蓝移, 发射强度会增强. 在薄膜态中, 全波长上的超快荧光衰减说明存在分子间光致能量转移过程.  相似文献   

14.
Photophysical properties of 5-aminoquinoline (5AQ) have been investigated in various non-polar and polar (protic and aprotic) solvents using steady state and time resolved fluorescence. In aprotic solvents, the spectral maxima depend on the polarity. However, in protic solvents both the fluorescence intensity as well decay time show decrease depending on the hydrogen bonding ability of the solvent. The results suggest that photochemistry 5AQ is quite sensitive towards the polarity as well as protic character of the solvent.  相似文献   

15.
The solution‐phase behavior of three main‐chain viologen polymers, which are composed of isomeric xylyl units and triflimide as a counterion, was studied in methanol, dimethylformamide, acetonitrile, and dimethyl sulfoxide as solvents microscopically under crossed polarizers. Each of them exhibited a lyotropic lamellar phase in both polar protic and aprotic solvents. Their C* for the formation of biphasic solutions (1–5 wt %) and concentrations (20–30 wt %) for the lyotropic solutions in methanol was much lower than those in polar aprotic solvents (20–71 and 60–81 wt %, respectively). Their high solubility, high C* for the formation of biphasic solutions, and high concentrations for the formation of lyotropic solutions in polar aprotic solvents were related to the significant reduction of strong ionic interactions between triflimide and 4,4′‐bipyridinium ions in each of these viologen polymers. They were the first examples of viologen polymers that exhibited a lyotropic phase in polar aprotic solvents. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2015–2024, 2002  相似文献   

16.
Room‐temperature nanosecond/microsecond laser‐flash photolysis and low‐temperature phosphorescence studies reveal that two different triplets coexist during the twisted intramolecular charge transfer (TICT) of 4‐(dimethylamino)benzonitrile in polar solvents.  相似文献   

17.
The high reactivity of 6π‐electrocyclization in polar solvents has remained one of the important challenges for diarylethenes because of the emergence of a twisted intramolecular charge transfer (TICT) state at the excited state in such polar media, which usually quenches the photocyclization reaction. Herein we report on the preparation and highly efficient photocyclization of 2,3‐diarylbenzo[b]thiophenes with nonsymmetric side‐aryl units in a polar solvent. While the dithiazolylbenzo[b]thiophene showed a suppressed quantum yield of 6π‐electrocyclization of 54 % in methanol, the replacement of a thiazole unit with a thiophene ring led to a photon‐quantitative 6π‐cyclization reaction. The nonsymmetrical modification into the side‐aryl units was considered to enhance the CH/π interactions between side‐aryl units to support a photoreactive conformation in methanol. The stabilization of the photochromic reactive conformation is expected to suppress the formation of the TICT state at the excited state, leading to highly efficient photoreactivity.  相似文献   

18.
Spectroscopic studies of Methyl violet in protic (water, methanol, ethanol, isopropanol and n-butanol) and aprotic solvents (acetone, DMF) were carried out. UV-Visible absorption spectra of Methyl violet in protic solvents showed a hypsochromic shift, as the solvent polarity was changed from less polar to more polar, while a bathochromic shift was observed for aprotic solvents. Transition energy of Methyl violet in different solvents was correlated with solvatochromic parameters to study solute–solvents interactions. The Kamlet–Taft, Catalan and unified scale models were applied to investigate interactions between Methyl violet and solvents. The best agreement is found for the Catalan model.  相似文献   

19.
Linking a polarized coumarin unit with an aromatic substituent via an amide bridge results in weak electronic coupling that affects the intramolecular electron-transfer (ET) process. As a result of this, interesting solvent-dependent photophysical properties can be observed. In polar solvents, electron transfer in coumarin derivatives of this type induces a mutual twist of the electron-donating and -accepting molecular units (TICT process) that facilitates radiationless decay processes (internal conversion). In the dyad with the strongest intramolecular hydrogen bond, the planar form is stabilized, such that twisting can only occur in highly polar solvents, whereas a fast proton-coupled electron-transfer (PCET process) occurs in nonpolar n-alkanes. The kPCET rate constant decreases linearly with the energy of the fluorescence maximum in different solvents. This observation can be explained in terms of competition between electron- and proton-transfer from a highly polarized (ca. 15 D) and fluorescent locally excited (1LE) state to a much less polarized (ca. 4 D) charge-transfer (1CT) state, a unique occurrence. Photophysical measurements performed for a family of related coumarin dyads, together with results of quantum-chemical computations, give insight into the mechanism of the ET process, which is followed by either a TICT or a PCET process. Our results reveal that dielectric solvation of the excited state slows down the PCET process, even in nonpolar solvents.  相似文献   

20.
A detailed study of the synthesis and photophysical properties of a new series of dipolar organic photosensitizers that feature a 1,3‐cyclohexadiene moiety integrated into the π‐conjugated structural backbone has been carried out. Dye‐sensitized solar cells (DSSCs) based on these structurally simple dyes have shown appreciable photo‐to‐electrical energy conversion efficiency, with the highest one up to 4.03 %. Solvent‐dependent fluorescence studies along with the observation of dual emission on dye 4 b and single emission on dyes 4 a and 32 suggest that dye 4 b possesses a highly polar emissive excited state located at a lower‐energy position than at the normal emissive excited state. A detailed photophysical investigation in conjunction with computational studies confirmed the twisted intramolecular charge‐transfer (TICT) state to be the lowest emissive excited state for dye 4 b in polar solvents. The relaxation from higher‐charge‐injection excited states to the lowest TICT state renders the back‐electron transfer process a forbidden one and significantly retards the charge recombination to boost the photocurrent. The electrochemical impedance under illumination and transient photovoltage decay studies showed smaller charge resistance and longer electron lifetime in 4 b ‐based DSSC compared to the DSSCs with reference dyes 4 a and 32 , which further illustrates the positive influence of the TICT state on the performance of DSSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号