首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mononuclear cations of the general formula [(η6-arene)RuCl(dpqMe2)]+ (dpqMe2 = 6,7-dimethyl-2,3-di(pyridine-2-yl)quinoxaline; arene = C6H6, 1; C6H5Me, 2; p-PriC6H4Me, 3; C6Me6, 4) as well as the dinuclear dications [(η6-arene)2Ru2Cl2(μ-dpqMe2)]2+ (arene = C6H6, 5; C6H5Me, 6; p-PriC6H4Me, 7; C6Me6, 8) have been synthesised from 6,7-dimethyl-2,3-di(pyridine-2-yl)quinoxaline (dpqMe2) and the corresponding chloro complexes [(η6-C6H6)Ru(μ-Cl)Cl]2, [(η6-C6H5Me)Ru(μ-Cl)Cl]2, [(η6-p-PriC6H4Me)Ru(μ-Cl)Cl]2 and [(η6-C6Me6)Ru(μ-Cl)Cl]2, respectively. The X-ray crystal structure analyses of [1][PF6], [3][PF6] and [6][PF6]2 reveal a typical piano-stool geometry around the metal centre; in the dinuclear complexes the two chloro ligands, with respect to each other, are found to be trans oriented.  相似文献   

2.
The mononuclear complexes [(η5-C5Me5)IrCl(L1)] (1), [(η5-C5Me5)RhCl(L1)] (2), [(η6-p-PriC6H4Me)RuCl(L1)] (3) and [(η6-C6Me6)RuCl(L1)] (4) have been synthesised from pyrazine-2-carboxylic acid (HL1) and the corresponding complexes [{(η5-C5Me5)IrCl2}2], [{(η5-C5Me5)RhCl2}2], [{(η6-p-PriC6H4Me)RuCl2}2], and [{(η6-C6Me6)RuCl2}2], respectively. The related dinuclear complexes [{(η5-C5Me5)IrCl}2(μ-L2)] (5), [{(η5-C5Me5)RhCl}2(μ-L2)] (6), [{(η6-p-PriC6H4Me)RuCl}2(μ-L2)] (7) and [{(η6-C6Me6)RuCl}2(μ-L2)] (8) have been obtained in a similar manner from pyrazine-2,5-dicarboxylic acid (H2L2). Compounds isomeric to the latter series, [{(η5-C5Me5)IrCl}2(μ-L3)] (9), [{(η5-C5Me5)RhCl}2(μ-L3)] (10), [{(p-PriC6H4Me)RuCl}2(μ-L3)] (11) and [{(η6-C6Me6)RuCl}2(μ-L3)] (12), have been prepared by using pyrazine-2,3-dicarboxylic acid (H2L3) instead of H2L2. The molecular structures of 2 and 3, determined by X-ray diffraction analysis, show the pyrazine-2-carboxylato moiety to act as an N,O-chelating ligand, while the structure analyses of 5-7, confirm that the pyrazine-2,5-dicarboxylato unit bridges two metal centres. The electrochemical behaviour of selected representatives has been studied by voltammetric techniques.  相似文献   

3.
Arene ruthenium complexes [(η6-arene)Ru(sacc)2(OH2)] (arene = para-cymeme, benzene) containing an aqua and two saccharinato ligands have been synthesized from [(η6-arene)RuCl2]2 and sodium saccharinate in a water-ethanol mixture (1:1). The aqua complex [(η6-MeC6H4Pri)Ru(sacc)2(OH2)] reacts with acetonitrile to give the acetonitrile complex [(η6-MeC6H4Pri)Ru(sacc)2(NCMe)]. The corresponding benzene derivative [(η6-C6H6)Ru(sacc)2(NCMe)] was obtained from [(η6-C6H6)RuCl2]2 and saccNa in an acetonitrile-methanol mixture (1:1). All new complexes show a piano-stool geometry with two mono-hapto nitrogen-bonded saccharinato ligands in addition to a H2O or MeCN ligand. All complexes of the type [(η6-arene)Ru(sacc)2(OH2)] and [(η6-arene)Ru(sacc)2(NCMe)] were found to catalyze the oxidation of secondary alcohols with tert-butyl hydroperoxide (ButOOH) to give the corresponding ketones in aqueous solution.  相似文献   

4.
Reactions of 3,6-bis(2-pyridyl)-4-phenylpyridazine (Lph) with [(η6-arene)Ru(μ-Cl)Cl]2 (arene = C6H6, p-iPrC6H4Me and C6Me6), [(η5-C5Me5)M(μ-Cl)Cl]2, (M = Rh and Ir) and [(η5-Cp)Ru(PPh3)2Cl] (Cp = C5H5, C5Me5 and C9H7) afford mononuclear complexes of the type [(η6-arene)Ru(Lph)Cl]PF6, [(η5-C5Me5)M(Lph)Cl]PF6 and [(Cp)Ru(Lph)(PPh3)]PF6 with different structural motifs depending on the π-acidity of the ligand, electronic properties of the central metal atom and nature of the co-ligands. Complexes [(η6-C6H6)Ru(Lph)Cl]PF61, [(η6-p-iPrC6H4Me)Ru(Lph)Cl]PF62, [(η5-C5Me5)Ir(Lph)Cl]PF65, [(η5-Cp)Ru(PPh3)(Lph)]PF6, (Cp = C5H5, 6; C5Me5, 7; C9H7, 8) show the type-A binding mode (see text), while complexes [(η6-C6Me6)Ru(Lph)Cl]PF63 and [(η5-C5Me5)Rh(Lph)Cl]PF64 show the type-B binding mode (see text). These differences reflect the more electron-rich character of the [(η6-C6Me6)Ru(μ-Cl)Cl]2 and [(η5-C5Me5)Rh(μ-Cl)Cl]2 complexes compared to the other starting precursor complexes. Binding modes of the ligand Lph are determined by 1H NMR spectroscopy, single-crystal X-ray analysis as well as evidence obtained from the solid-state structures and corroborated by density functional theory calculations. From the systems studied here, it is concluded that the electron density on the central metal atom of these complexes plays an important role in deciding the ligand binding sites.  相似文献   

5.
A series of neutral, anionic and cationic arene ruthenium complexes containing the trichlorostannyl ligand have been synthesised from SnCl2 and the corresponding arene ruthenium dichloride dimers [(η6-arene)Ru(μ2-Cl)Cl]2 (arene = C6H6, PriC6H4Me). While the reaction with triphenylphosphine and stannous chloride only gives the neutral mono(trichlorostannyl) complexes [(η6-C6H6)Ru(PPh3)(SnCl3)Cl] (1) and [(η6-PriC6H4Me)Ru(PPh3)(SnCl3)Cl] (2), the neutral di(trichlorostannyl) complex [(η6-PriC6H4Me)Ru(NCPh)(SnCl3)2] (3) could be obtained for the para-cymene derivative with benzonitrile as additional ligand. By contrast, the analogous reaction with the benzene derivative leads to a salt composed of the cationic mono(trichlorostannyl) complex [(η6-C6H6)Ru(NCPh)2(SnCl3)]+ (5) and of the anionic tris(trichlorostannyl) complex [(η6-C6H6)Ru(SnCl3)3] (6). On the other hand, [(η6-PriC6H4Me)Ru(μ2-Cl)Cl]2 reacts with SnCl2 and hexamethylenetetramine hydrochloride or 18-crown-6 to give the anionic di(trichlorostannyl) complex [(η6-PriC6H4Me)Ru(SnCl3)2Cl] (4), isolated as the hexamethylenetetrammonium salt or the chloro-tin 18-crown-6 salt. The single-crystal X-ray structure analyses of 1, 2, [(CH2)6N4H][4], [(18-crown-6)SnCl][4] and [5][6] reveal for all complexes a pseudo-tetrahedral piano-stool geometry with ruthenium-tin bonds ranging from 2.56 (anionic complexes) to 2.60 Å (cationic complex).  相似文献   

6.
[(η5-C5R5)Fe(PMe3)2H] (R = H, Me) can be made in good yields in a simple one-pot reaction between FeCl2, PMe3, C5R5H (R = H, Me) and Na/Hg in thf. Reaction of [(η5-C5H5)Fe(PMe3)2H] with pentaborane(9) gives the known metallaborane [(η5-C5H5)-nido-2-FeB5H10] (1) in improved yield as well as the new metallaboranes [(η-C5H5)-nido-2-FeB5H8{μ-5,6-Fe(η5-C5H5)(PMe3)(μ-6,7-H)}] (2), [(η-C5H5)(PMe3)-arachno-2-FeB3H8] (3), [(η5-C5H5)2-capped-nido-2,3-Fe2B4H8] (4), [(η5-C5H5)-nido-2-FeB4H7(PMe3)] (5) and [(η5-C5H5)-nido-2-FeB5H8(PMe3)] (6). Reaction of [(η5-C5Me5)Fe(PMe3)2H] with pentaborane(9) gives predominantly [(η5-C5Me5)-nido-2-FeB5H10] (7) and [(η5-C5Me5)(PMe3)-arachno-2-FeB3H8] (8). Reaction of [(η5-C5H5)Fe(PMe3)2H] with 2 equiv. of BH3 · thf gives low yields of ferrocene and compound 3. Compound 7 thermally isomerises to the apical isomer [(η5-C5H5)-nido-2-FeB5H10] (9) in low yield. Compounds 1 and 7 deprotonate cleanly in the presence of KH at the unique B-H-B bridge to give [(η5-C5H5)-nido-2-FeB5H9][K+] (10) and [(η5-C5Me5)-nido-2-FeB5H9][K+] (11) respectively, whilst 6 deprotonates more slowly at one of two equivalent B-H-B bridges to give the fluxional anion [(η5-C5H5)-nido-2-FeB5H7(PMe3)] (12).  相似文献   

7.
Five binuclear half-sandwich cobalt complexes, [(η5-C5H4)Co(CO)I2]2SiMe2 (3), [(η5-C5H4)Co(S2C2B10H10)]2SiMe2 (4), [(η5-C5H4)]2Co22-S2C2B10H10)SiMe2 (5), [(η5-C5H3)CoI2](μ-I)[(η5-C5H3)Co(CO)I](SiMe2)2 (8), [(η5-C5H3)Co(S2C2B10H10)]2(SiMe2)2 (9), were successfully synthesized in moderate yield by the reactions of corresponding ligands, (C5H5)2SiMe2 (1) and (C5H4)2(SiMe2)2 (6), respectively. The molecular structures of 3, 5, 6, 8 and 9 was determined by X-ray crystallographic analysis, which distinctly depict various molecular structures containing the Cp rings and the metal centers with halide or 1,2-dicarba-closo-dodecaborane-1,2-dithiolato ligands. For the (η5-C5H4)2SiMe2 complexes, coordination of the fragments CpCo favors a exo conformation. With the rigid structure of the di-bridged ligand (C5H4)2(SiMe2)2, only cis isomers of the corresponding (η5-C5H3)2(Si2Me2)2 complexes are formed. All the complexes have been well characterized by elemental analysis, NMR and IR spectra.  相似文献   

8.
《Polyhedron》1999,18(23):2981-2985
The reaction of [{Ru(η6-C6H6)Cl(μ-Cl)}2] with Py3COH in ethanol results in the formation of the cation [Ru(η6-C6H6)(N,N′,O,-(C5H4N)3CO)]+ which is isolated as its hexafluorphosphate salt 1. The cation acts as a ligand towards other transition metal ions. With Ag+ the hetero-trinuclear complex [{Ru(η6-C6H6)((C5H4N)3CO)}2Ag][PF6]3 2 is formed, while reaction with [Pd(PhCN)2Cl2] gives the bimetallic [Ru(η6-C6H6)((C5H4N)3CO)PdCl2][PF6] 3. Both compounds were fully characterised by spectroscopic methods and the trinuclear complex was additionally characterised by X-ray diffraction.  相似文献   

9.
The reactions of [(η6-C6H6)RuCl2]2 and [(η6-p-cymene)RuCl2]2 with hydrogen in the presence of the water-soluble phosphines tppts (meta-trisulfonated triphenylphosphine) and pta (1,3,5-triaza-7-phosphaadamantane) afforded as the main species [(η6-C6H6)RuH(tppts)2]+, [(η6-C6H6)RuH(pta)2]+, [(η6-p-cymene)RuH(tppts)2]+ and [(η6-p-cymene)RuH(pta)2]+. This latter complex was also formed in the reaction of [(η6-p-cymene)RuCl2(pta)] and hydrogen with a redistribution of pta. In addition, prolonged hydrogenation at elevated temperatures and in the presence of excess of pta led to the formation of the arene-free [RuH(pta)4Cl], [RuH(pta)4(H2O)]+, [RuH2(pta)4] and [RuH(pta)5]+ complexes. Ru-hydrides, such as [(η6-arene)RuH(L)2]+, catalyzed the hydrogenation of bicarbonate to formate in aqueous solutions at p(H2)=100 bar, T=50-70 °C.  相似文献   

10.
A quite general approach for the preparation of η5-and η6-cyclichydrocarbon platinum group metal complexes is reported. The dinuclear arene ruthenium complexes [(η6-arene)Ru(μ-Cl)Cl]2 (arene = C6H6, C10H14 and C6Me6) and η5-pentamethylcyclopentadienyl rhodium and iridium complexes [(η6-C5Me5)M(μ-Cl)Cl]2 (M = Rh, Ir) react with 2 equiv. of 4-amino-3,5-di-pyridyltriazole (dpt-NH2) in presence of NH4PF6 to afford the corresponding mononuclear complexes of the type [(η6-arene)Ru(dpt-NH2)Cl]PF6 {arene = C10H14 (1), C6H6 (2) and C6Me6 (3)} and [(η6-C5Me5)M(dpt-NH2)Cl]PF6 {M = Rh (4), Ir (5)}. However, the mononuclear η5-cyclopentadienyl analogues such as [(η5-C5H5)Ru(PPh3)2Cl], [(η5-C5H5)Os(PPh3)2Br], [(η5-C5Me5)Ru(PPh3)2Cl] and [(η5-C9H7)Ru(PPh3)2Cl] complexes react in presence of 1 equiv. of dpt-NH2 and 1 equiv. of NH4PF6 in methanol yielded mononuclear complexes [(η5-C5H5)Ru(PPh3)(dpt-NH2)]PF6 (6), [(η5-C5H5)Os(PPh3)(dpt-NH2)]PF6 (7), [(η5-C5Me5)Ru(PPh3)(dpt-NH2)]PF6 (8) and [(η5-C9H7)Ru(PPh3)(dpt-NH2)]PF6 (9), respectively. These compounds have been totally characterized by IR, NMR and mass spectrometry. The molecular structures of 4 and 6 have been established by single crystal X-ray diffraction and some of the representative complexes have also been studied by UV–Vis spectroscopy.  相似文献   

11.
The reaction of the dilithium salt Li2[Me2Si(C5H4)(C5Me4)] (2) of Me2Si(C5H5)(C5HMe4) (1) with [MCl(C8H12)]2 (M=Rh, Ir) and [RhCl(CO)2]2 afforded homodinuclear metal complexes [{Me2Si(η5-C5H4)(η5-C5Me4)}{M(C8H12)}2] (M=Rh: 3; M=Ir: 4) and [{Me2Si(η5-C5H4)(η5-C5Me4)}Rh2(CO)2(μ-CO)] (5), respectively. The reaction of 2 with RhCl(CO)(PPh3)2 afforded a mononuclear metal complex [{Me2Si(C5HMe4)(η5-C5H4)}Rh(CO)PPh3] (6) leaving the C5HMe4 moiety intact. Taking advantage of the difference in reactivity of the two cyclopentadienyl moieties of 2, heterodinuclear complexes were prepared in one pot. Thus, the reaction of 2 with RhCl(CO)(PPh3)2, followed by the treatment with [MCl(C8H12)]2 (M=Rh, Ir) afforded a homodinuclear metal complex [Rh(CO)PPh3{(η5-C5H4)SiMe25-C5Me4)}Rh(C8H12)] (7) consisting of two rhodium centers with different ligands and a heterodinuclear metal complex [Rh(CO)(PPh3){(η5-C5H4)SiMe25-C5Me4)}Ir(C8H12)] (8). The successive treatment of 2 with [IrCl(C8H12)]2 and [RhCl(C8H12)]2 provided heterodinuclear metal complex [Ir(C8H12){(η5-C5H4)SiMe25-C5Me4)}Rh(C8H12)] (9). The reaction of 2 with CoCl(PPh3)3 and then with PhCCPh gave a mononuclear cobaltacyclopentadiene complex [{Me2Si(C5Me4H)(η5-C5H4)}Co(CPhCPhCPhCPh)(PPh3)] (10). However, successive treatment of 2 with CoCl(PPh3)3, PhCCPh and [MCl(C8H12)]2 in this order afforded heterodinuclear metal complexes [M(C8H12){(η5-C5H4)SiMe25-C5Me4)}Co(η4-C4Ph4)] (M=Rh: 11; M=Ir: 12) in which the cobalt center was connected to the C5Me4 moiety. Although the heating of 10 afforded a tetraphenylcyclobutadiene complex [{Me2Si(C5Me4H)(η5-C5H4)}Co(η4-C4Ph4)] (13), in which the cobalt center was connected to the C5H4 moiety, simple heating of the reaction mixture of 2, CoCl(PPh3)3 and PhCCPh resulted in the formation of a tetraphenylcyclobutadiene complex [{Me2Si(C5H5)(η5-C5Me4)}Co(η4-C4Ph4)] (14), in which the cobalt center was connected to the C5Me4 moiety. The mechanism of the cobalt transfer was suggested based on the electrophilicity of the formal trivalent cobaltacyclopentadiene moiety. In the presence of 1,5-cyclooctadiene, the reaction of 2 with CoCl(PPh3)3 provided a mononuclear cobalt cyclooctadiene complex [{Me2Si(C5Me4H)(η5-C5H4)}Co(C8H12)] (15). The reaction of 15 with n-BuLi followed by the treatment with [MCl(C8H12)]2 (M=Rh, Ir) afforded the heterodinuclear metal complexes of [Co(C8H12){(η5-C5H4)SiMe25-C5Me4)}M(C8H12)] (M=Rh: 16; M=Ir: 17). Treatment of 6 with Fe2(CO)9 at room temperature afforded a heterodinuclear metal complex [{Me2Si(C5HMe4)(η5-C5H4)}{Rh(PPh3)(μ-CO)2Fe(CO)3}] (18) in which the C5HMe4 moiety was kept intact. Treatment of dinuclear metal complex 5 with Fe2(CO)9 afforded a heterotrinuclear metal complex [{(η5-C5H4)SiMe25-C5Me4)}{Rh(CO)Rh(μ-CO)2Fe(CO)3}] (19) having a triangular metal framework. The crystal and molecular structures of 3, 11, 12, 18 and 19 have been determined by single-crystal X-ray diffraction analysis.  相似文献   

12.
The dinuclear dichloro complexes [(η6-arene)2Ru2(μ-Cl)2Cl2] and [(η5-C5Me5)2M2(μ-Cl)2Cl2] react with 2-(pyridine-2-yl)thiazole (pyTz) to afford the cationic complexes [(η6-arene)Ru(pyTz)Cl]+ (arene = C6H61, p-iPrC6H4Me 2 or C6Me63) and [(η5-C5Me5)M(pyTz)Cl]+ (M = Rh 4 or Ir 5), isolated as the chloride salts. The reaction of 2 and 3 with SnCl2 leads to the dinuclear heterometallic trichlorostannyl derivatives [(η6-p-iPrC6H4Me)Ru(pyTz)(SnCl3)]+ (6) and [(η6-C6Me6)Ru(pyTz)(SnCl3)]+ (7), respectively, also isolated as the chloride salts. The molecular structures of 4, 5 and 7 have been established by single-crystal X-ray structure analyses of the corresponding hexafluorophosphate salts. The in vitro anticancer activities of the metal complexes on human ovarian cancer cell lines A2780 and A2780cisR (cisplatin-resistant), as well as their interactions with plasmid DNA and the model protein ubiquitin, have been investigated.  相似文献   

13.
The cations [Ru(1—3:5—6-η-C8H11)(η6 -1,3,5-cyclooctatriene)]+ (2) and [RuH(COD)L3]+ (5) (COD = cycloocta-1,5-diene, L = PMe2Ph, AsMePh2) are convenient precursors to a range of η5 -dienyl complexes of ruthenium(II); evidence for hydrogen transfer processes is presented.  相似文献   

14.
The mononuclear cations [(η5-C5Me5)RhCl(bpym)]+ (1), [(η5-C5Me5)IrCl(bpym)]+ (2), [(η6-p-PriC6H4Me)RuCl(bpym)]+ (3) and [(η6-C6Me6)RuCl(bpym)]+ (4) as well as the dinuclear dications [{(η5-C5Me5)RhCl}2(bpym)]2+ (5), [{(η5-C5Me5)IrCl}2(bpym)]2+ (6), [{(η6-p-PriC6H4Me)RuCl}2(bpym)]2+ (7) and [{(η6-C6Me6)RuCl}2(bpym)]2+ (8) have been synthesised from 2,2′-bipyrimidine (bpym) and the corresponding chloro complexes [(η5-C5Me5)RhCl2]2, [(η5-C5Me5)IrCl2]2, [(η6-PriC6H4Me)RuCl2]2 and [(η6-C6Me6)RuCl2]2, respectively. The X-ray crystal structure analyses of [3][PF6], [5][PF6]2, [6][CF3SO3]2 and [7][PF6]2 reveal a typical piano-stool geometry around the metal centres; in the dinuclear complexes the chloro ligands attached to the two metal centres are found to be, with respect to each other, cis oriented for 5 and 6 but trans for 7. The electrochemical behaviour of 1-8 has been studied by voltammetric methods. In addition, the catalytic potential of 1-8 for transfer hydrogenation reactions in aqueous solution has been evaluated: All complexes catalyse the reaction of acetophenone with formic acid to give phenylethanol and carbon dioxide. For both the mononuclear and dinuclear series the best results were obtained (50 °C, pH 4) with rhodium complexes, giving turnover frequencies of 10.5 h−1 for 1 and 19 h−1 for 5.  相似文献   

15.
The complex (η5-C5H4CH3)Mn(NO)(PPh3)I has been prepared by the reaction of NaI with [(η5-C5H4CH3)Mn(NO)(CO)(PPh3)]+ and also by the reaction of [(η5-C5H4CH3)Mn(NO)(CO)2]+ with NaI followed by PPh3. This iodide compound reacts with NaCN to yield (η5-C5H4CH3)Mn(NO)(PPh3)CN which is ethylated by [(C2H5)3O]BF4 to yield [(η5-C5H4CH3)Mn(NO)(PPh3)(CNC2H5)]+. Both [(η5-C5H4CH3)Mn(NO)(CO)2]+ and [(η5-C5H4CH3)Mn(NO)(PPh3)(CO)]+ react with NaCN to yield [(η5-C5H4CH3)Mn(NO)(CN)2]?. This anion reacts with Ph3SnCl to yield cis-(η5-C5H4CH3)Mn(NO)(CN)2SnPh3 and with [(C2-H5)3O]BF4 to yield [(η5-C5H4CH3)Mn(NO)(CNC2H5)2]+. The reaction of (η5-C5-H4CH3)Mn(NO)(PPh3)I with AgBF4 in acetonitrile yields [(η5-C5H4CH3)Mn-(NO)(PPh3)(NCCH3)]+. The complex (η5-C5H4CH3)Mn(NO)(CO)I, produced in the reaction of [(η5-C5H4CH3)Mn(NO)(CO)2]+ with NaI, is not stable and decomposes to the dimeric complex (η5-C5H4CH3)2Mn2(NO)3I for which a reasonable structure is proposed. Similar dimers can be prepared from the other halide salts. The reaction of (η7-C7H7)Mo(CO)(PPh3)I with NaCN yields (η7-C7-H7)Mo(CO)(PPh3)CN which is ethylated by [(C2H5)3O]BF4 to yield [(η7-C7H7)-Mo(CO)(PPh3)(CNC2H5)]+. The interaction of this molybdenum halide complex with AgBF4 in acetonitrile and pyridine yields [(η7-C7H7)Mo(CO)(PPh3)-(NCCH3)]+ and [(η7-C7H7)Mo(CO)(PPh3)(NC5H5)]+, respectively. Both (η5-C5-H4CH3)Mn(NO)(PPh3)I and (η7-C7H7)Mo(CO)(PPh3)I are oxidized by NOPF6 to the respective 17-electron cations in acetonitrile at ?78°C but revert to the neutral halide complex at room temperature. This result is supported by electrochemical data.  相似文献   

16.
The coupling of [Ru(CO)2L(η4-cot)] (L = CO or PPh3, cot = cyclooctatetraene) with [Fe(CO)35-cyclohexadienyl)]+ or [Fe{P(OMe)3}(NO)23-allyl)]+ yields respectively the dimetallic species [Ru(CO)2L(η23-C8H8{Fe(CO)34-C6H7)}] (3) and the allyl-substituted derivative [Ru(CO)2L(η5-C8H8CH2C(Me)CH2)][PF6] (5) whose X-ray structure is reported; paramagnetic [Co(η-C5H5)2] and [Ru(CO)35-cyclohexadienyl)]+ give diamagnetic [Ru(CO)34-C6H7C5H6(o-C5H5)] (8) via CC bond formation and one-electron reduction.  相似文献   

17.
The reaction of (η5-C9H2Me5)Rh(1,5-C8H12) (1) with I2 gives the iodide complex [(η5-C9H2Me5)RhI2]2 (2). The solvate complex [(η5- C9H2Me5)Rh(MeNO2)3]2+ (generated in situ by treatment of 2 with Ag+ in nitromethane) reacts with benzene and its derivatives giving the dicationic arene complexes [(η5-9H2Me5)Rh(arene)]2+ [arene = C6H6 (3a), C6Me6 (3b), C6H5OMe (3c)]. Similar reaction with the borole sandwich compound CpRh(η5-C4H4BPh) results in the arene-type complex [CpRh(μ-η56-C4H4BPh)Rh(η5-C9H2Me5)]2+ (4). Treatment of 2 with CpTl in acetonitrile affords cation [(η5-C9H2Me5)RhCp]+ (5). The structure of [3c](BF4)2 was determined by X-ray diffraction. The electrochemical behaviour of complexes prepared was studied. The rhodium-benzene bonding in series of the related complexes [(ring)Rh(C6H6)]2+ (ring = Cp, Cp, C9H7, C9H2Me5) was analyzed using energy and charge decomposition schemes.  相似文献   

18.
《Polyhedron》2005,24(3):391-396
The reaction of [(η5-C5Me5)Ru(PPh3)2Cl] (1) with acetonitrile in the presence of excess NH4PF6 leads to the formation of the cationic ruthenium(II) complex [(η5-C5Me5)Ru(PPh3)2(CH3CN)]PF6 (2). The complex (2) reacts with a series of N,N′ donor Schiff base ligands viz. para-substituted N-(pyrid-2-ylmethylene)-phenylamines (ppa) in methanol to yield pentamethylcylopentadienyl ruthenium(II) Schiff base complexes of the formulation [(η5-C5Me5)Ru(PPh3)(C5H4N-2-CHN-C6H4-p-X)]PF6 [3a]PF6–[3f]PF6, where C5Me5 = pentamethylcylopentadienyl, X = H, [3a]PF6, Me, [3b]PF6, OMe, [3c]PF6, NO2, [3d]PF6, Cl, [3e]PF6, COOH, [3f]PF6. The complexes were isolated as their hexafluorophosphate salts. The complexes were fully characterized on the basis of elemental analyses and NMR spectroscopy. The molecular structure of a representative complex, [(η5-C5Me5)Ru(PPh3)(C5H4N-2-CHN-C6H4-p-Cl)]PF6 [3e]PF6, has been established by X-ray crystallography.  相似文献   

19.
The complex [Ru(η5-C7H11)2H]BF4 (C7H11 = 2,4-dimethylpenta-2,4-dienyl) is highly reactive towards two- and six-electron ligands. e.g. giving with CO complex [RuCO(η4-C7H12)(η5-C7H11)]BF4. The 2,4-dimethylpenta-1,3-diene ligand (C7H12) of the latter complex is readily displaced giving, e.g. with excess cyclohexa-1,3-diene (C6H8) complex [RuCO(η4-C6H8)(η5-C7H11)]BF4. These reactions provide a convenient entry into monopentadienylruthenium chemistry.  相似文献   

20.
The mononuclear cationic complexes [(η6-C6H6)RuCl(L)]+ (1), [(η6-p-iPrC6H4Me)RuCl(L)]+ (2), [(η5-C5H5)Ru(PPh3)(L)]+ (3), [(η5-C5Me5)Ru(PPh3)(L)]+ (4), [(η5-C5Me5)RhCl(L)]+ (5), [(η5-C5Me5)IrCl(L)]+ (6) as well as the dinuclear dicationic complexes [{(η6-C6H6)RuCl}2(L)]2+ (7), [{(η6-p-iPrC6H4Me)RuCl}2(L)]2+ (8), [{(η5-C5H5)Ru(PPh3)}2(L)]2+ (9), [{(η5-C5Me5)Ru(PPh3)}2(L)]2+ (10), [{(η5-C5Me5)RhCl}2(L)]2+ (11) and [{(η5-C5Me5)IrCl}2(L)]2+ (12) have been synthesized from 4,4′-bis(2-pyridyl-4-thiazole) (L) and the corresponding complexes [(η6-C6H6)Ru(μ-Cl)Cl]2, [(η6-p-iPrC6H4Me)Ru(μ-Cl)Cl]2, [(η5-C5H5)Ru(PPh3)2Cl)], [(η5-C5Me5)Ru(PPh3)2Cl], [(η5-C5Me5)Rh(μ-Cl)Cl]2 and [(η5-C5Me5)Ir(μ-Cl)Cl]2, respectively. All complexes were isolated as hexafluorophosphate salts and characterized by IR, NMR, mass spectrometry and UV-vis spectroscopy. The X-ray crystal structure analyses of [3]PF6, [5]PF6, [8](PF6)2 and [12](PF6)2 reveal a typical piano-stool geometry around the metal centers with a five-membered metallo-cycle in which 4,4′-bis(2-pyridyl-4-thiazole) acts as a N,N′-chelating ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号