首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Treatment of [Mn(CO)5Br] (1) with a slight excess of Me3SnCCPh affords the known species [(CO)5Mn(CCPh)] (2), whereas reaction between 1 and Me3SnCCRCCSnMe3 (R = p-C6H4C6H4) gives the bimetallic complex [(CO)5MnCCRCCSnMe3] (3). This latter species is a good precursor for other syntheses, and treatment of 3 with a further equivalent of 1 gives [(CO)5MnCCRCCMn(CO)5] (4), while 3 with trans-[Pd(PBu3)2Cl2] affords [(CO)5MnCCRCCPd(PBu3)2Cl] (5).  相似文献   

2.
The complexes trans-[Ru(PMe3)4(CCPh)2] and trans-[Ru(PMe3)4(CCC6H4C6H4CCSnMe3)2] have been prepared from the reaction between trans-[Ru(PMe3)4Cl2] and an excess of either Me3SnCCPh or Me3SnCCRCCSnMe3 (R = p-C6H4C6H4), respectively. However, if only one equivalent of the latter reagent is used the rod-like polymeric species trans-[-Ru(PMe3)4CCRCC-]n can be isolated.  相似文献   

3.
The mononuclear complexes [(η5-C5Me5)IrCl(L1)] (1), [(η5-C5Me5)RhCl(L1)] (2), [(η6-p-PriC6H4Me)RuCl(L1)] (3) and [(η6-C6Me6)RuCl(L1)] (4) have been synthesised from pyrazine-2-carboxylic acid (HL1) and the corresponding complexes [{(η5-C5Me5)IrCl2}2], [{(η5-C5Me5)RhCl2}2], [{(η6-p-PriC6H4Me)RuCl2}2], and [{(η6-C6Me6)RuCl2}2], respectively. The related dinuclear complexes [{(η5-C5Me5)IrCl}2(μ-L2)] (5), [{(η5-C5Me5)RhCl}2(μ-L2)] (6), [{(η6-p-PriC6H4Me)RuCl}2(μ-L2)] (7) and [{(η6-C6Me6)RuCl}2(μ-L2)] (8) have been obtained in a similar manner from pyrazine-2,5-dicarboxylic acid (H2L2). Compounds isomeric to the latter series, [{(η5-C5Me5)IrCl}2(μ-L3)] (9), [{(η5-C5Me5)RhCl}2(μ-L3)] (10), [{(p-PriC6H4Me)RuCl}2(μ-L3)] (11) and [{(η6-C6Me6)RuCl}2(μ-L3)] (12), have been prepared by using pyrazine-2,3-dicarboxylic acid (H2L3) instead of H2L2. The molecular structures of 2 and 3, determined by X-ray diffraction analysis, show the pyrazine-2-carboxylato moiety to act as an N,O-chelating ligand, while the structure analyses of 5-7, confirm that the pyrazine-2,5-dicarboxylato unit bridges two metal centres. The electrochemical behaviour of selected representatives has been studied by voltammetric techniques.  相似文献   

4.
Dibenzylphenylphosphine in the reaction with CoMe(PMe3)4 afforded complex [(Me3P)3Co((ortho-C6H4)∩P(C6H5)(CH2C6H5))] (1) by Csp2-H activation via ortho-metalation with P atom as anchoring group. An unexpected dinitrogen iron(II) complex [(Me3P)2(N2)Fe((ortho-C6H4)2∩P(C6H5))] (2) stabilized by two five-membered chelate rings as [CPC]-pincer ligand was formed through the reaction of dibenzylphenylphosphine with FeMe2(PMe3)4 via double Csp2-H activation. The reactions of complexes 1 and 2 with carbon monoxide delivered carbonyl complexes [(Me3P)(CO)2Co((ortho-C6H4)∩P(C6H5)(CH2C6H5))] (3) and [(Me3P)2(CO)Fe((ortho-C6H4)2∩P(C6H5))] (4). An iodo methyl cobalt(III) complex [(Me3P)2(Me)(I)Co((ortho-C6H4)∩P(C6H5)(CH2C6H5))] (5) was isolated through the reaction of 1 with iodomethane. The structures of 1, 2, 3, 4 and 5 were determined by X-ray diffraction.  相似文献   

5.
The reaction of the dilithium salt Li2[Me2Si(C5H4)(C5Me4)] (2) of Me2Si(C5H5)(C5HMe4) (1) with [MCl(C8H12)]2 (M=Rh, Ir) and [RhCl(CO)2]2 afforded homodinuclear metal complexes [{Me2Si(η5-C5H4)(η5-C5Me4)}{M(C8H12)}2] (M=Rh: 3; M=Ir: 4) and [{Me2Si(η5-C5H4)(η5-C5Me4)}Rh2(CO)2(μ-CO)] (5), respectively. The reaction of 2 with RhCl(CO)(PPh3)2 afforded a mononuclear metal complex [{Me2Si(C5HMe4)(η5-C5H4)}Rh(CO)PPh3] (6) leaving the C5HMe4 moiety intact. Taking advantage of the difference in reactivity of the two cyclopentadienyl moieties of 2, heterodinuclear complexes were prepared in one pot. Thus, the reaction of 2 with RhCl(CO)(PPh3)2, followed by the treatment with [MCl(C8H12)]2 (M=Rh, Ir) afforded a homodinuclear metal complex [Rh(CO)PPh3{(η5-C5H4)SiMe25-C5Me4)}Rh(C8H12)] (7) consisting of two rhodium centers with different ligands and a heterodinuclear metal complex [Rh(CO)(PPh3){(η5-C5H4)SiMe25-C5Me4)}Ir(C8H12)] (8). The successive treatment of 2 with [IrCl(C8H12)]2 and [RhCl(C8H12)]2 provided heterodinuclear metal complex [Ir(C8H12){(η5-C5H4)SiMe25-C5Me4)}Rh(C8H12)] (9). The reaction of 2 with CoCl(PPh3)3 and then with PhCCPh gave a mononuclear cobaltacyclopentadiene complex [{Me2Si(C5Me4H)(η5-C5H4)}Co(CPhCPhCPhCPh)(PPh3)] (10). However, successive treatment of 2 with CoCl(PPh3)3, PhCCPh and [MCl(C8H12)]2 in this order afforded heterodinuclear metal complexes [M(C8H12){(η5-C5H4)SiMe25-C5Me4)}Co(η4-C4Ph4)] (M=Rh: 11; M=Ir: 12) in which the cobalt center was connected to the C5Me4 moiety. Although the heating of 10 afforded a tetraphenylcyclobutadiene complex [{Me2Si(C5Me4H)(η5-C5H4)}Co(η4-C4Ph4)] (13), in which the cobalt center was connected to the C5H4 moiety, simple heating of the reaction mixture of 2, CoCl(PPh3)3 and PhCCPh resulted in the formation of a tetraphenylcyclobutadiene complex [{Me2Si(C5H5)(η5-C5Me4)}Co(η4-C4Ph4)] (14), in which the cobalt center was connected to the C5Me4 moiety. The mechanism of the cobalt transfer was suggested based on the electrophilicity of the formal trivalent cobaltacyclopentadiene moiety. In the presence of 1,5-cyclooctadiene, the reaction of 2 with CoCl(PPh3)3 provided a mononuclear cobalt cyclooctadiene complex [{Me2Si(C5Me4H)(η5-C5H4)}Co(C8H12)] (15). The reaction of 15 with n-BuLi followed by the treatment with [MCl(C8H12)]2 (M=Rh, Ir) afforded the heterodinuclear metal complexes of [Co(C8H12){(η5-C5H4)SiMe25-C5Me4)}M(C8H12)] (M=Rh: 16; M=Ir: 17). Treatment of 6 with Fe2(CO)9 at room temperature afforded a heterodinuclear metal complex [{Me2Si(C5HMe4)(η5-C5H4)}{Rh(PPh3)(μ-CO)2Fe(CO)3}] (18) in which the C5HMe4 moiety was kept intact. Treatment of dinuclear metal complex 5 with Fe2(CO)9 afforded a heterotrinuclear metal complex [{(η5-C5H4)SiMe25-C5Me4)}{Rh(CO)Rh(μ-CO)2Fe(CO)3}] (19) having a triangular metal framework. The crystal and molecular structures of 3, 11, 12, 18 and 19 have been determined by single-crystal X-ray diffraction analysis.  相似文献   

6.
The preparation of the compounds o-C6H4(CCMR3)2 (M = Si, Ge, Pb; R = CH3; M = Pb; R = C6H5) is described. Their properties are compared with those of o-C6H4(CCSnR3)2 (R = CH3, C6H5) and those of their p-isomers. The structures and bonding conditions proposed for these molecules are supported by dipole measurements, mass spectroscopy, IR, Raman, 1H NMR and 13C NMR data.  相似文献   

7.
A gas phase electron diffraction study of tetrakis(trifluoropropynyl)tin is reported. The model, based on Td symmetry for the carbon—tin skeleton and C3v symmetry for the CF3 groups, refines to the following parameters (bond lengths, ra, in nm; valence angles in degrees): Sn—C0.2070(7), CC 0.1215(6), C—C 0.1460(7), C—F 0.1343(2), CCF 111.3(0.2). The uncertainties (given in parentheses) represent three times the standard deviation values. The results obtained point to practically free rotation of the CF3 groups. The presence of electronegative CF3 causes shortening of the Sn-C bonds in Sn(CC—CF3)4 from Me3SnCCH and Me3 SnCCSnMe3. The triple CC bond length is larger than in hexafluoro-2-butyne and nearly the same as in dimethylacetylene.  相似文献   

8.
Reactions of 3,6-bis(2-pyridyl)-4-phenylpyridazine (Lph) with [(η6-arene)Ru(μ-Cl)Cl]2 (arene = C6H6, p-iPrC6H4Me and C6Me6), [(η5-C5Me5)M(μ-Cl)Cl]2, (M = Rh and Ir) and [(η5-Cp)Ru(PPh3)2Cl] (Cp = C5H5, C5Me5 and C9H7) afford mononuclear complexes of the type [(η6-arene)Ru(Lph)Cl]PF6, [(η5-C5Me5)M(Lph)Cl]PF6 and [(Cp)Ru(Lph)(PPh3)]PF6 with different structural motifs depending on the π-acidity of the ligand, electronic properties of the central metal atom and nature of the co-ligands. Complexes [(η6-C6H6)Ru(Lph)Cl]PF61, [(η6-p-iPrC6H4Me)Ru(Lph)Cl]PF62, [(η5-C5Me5)Ir(Lph)Cl]PF65, [(η5-Cp)Ru(PPh3)(Lph)]PF6, (Cp = C5H5, 6; C5Me5, 7; C9H7, 8) show the type-A binding mode (see text), while complexes [(η6-C6Me6)Ru(Lph)Cl]PF63 and [(η5-C5Me5)Rh(Lph)Cl]PF64 show the type-B binding mode (see text). These differences reflect the more electron-rich character of the [(η6-C6Me6)Ru(μ-Cl)Cl]2 and [(η5-C5Me5)Rh(μ-Cl)Cl]2 complexes compared to the other starting precursor complexes. Binding modes of the ligand Lph are determined by 1H NMR spectroscopy, single-crystal X-ray analysis as well as evidence obtained from the solid-state structures and corroborated by density functional theory calculations. From the systems studied here, it is concluded that the electron density on the central metal atom of these complexes plays an important role in deciding the ligand binding sites.  相似文献   

9.
The reaction of (π-C5H5)Co(CO)2 with PhCCSiMe2R (R = Me, SiMe3) gave two isomeric cyclobutadiene complexes, cis- and trans-(π-C5H5)Co[Ph2C4(SiMe2R)2], in almost quantitative yields. However, the reaction with RMe2SiCCSiMe2R (R = Me, Ph) led to the formation of new dinuclear cobalt complexes. For example, with bis(trimethylsilyl)acetylene, (π-C5H5)2Co(CO)[(Me3Si)2C2] was obtained quantitatively. The latter was further converted to (π-C5H5)Co(Ph4C4) and (πC5H5)Co[cis-Ph2C4(Me3Si)2] by treatment with PhCCPh. The physical properties and spectroscopic characteristics of these new compounds are described.  相似文献   

10.
The reaction of (η5-C9H2Me5)Rh(1,5-C8H12) (1) with I2 gives the iodide complex [(η5-C9H2Me5)RhI2]2 (2). The solvate complex [(η5- C9H2Me5)Rh(MeNO2)3]2+ (generated in situ by treatment of 2 with Ag+ in nitromethane) reacts with benzene and its derivatives giving the dicationic arene complexes [(η5-9H2Me5)Rh(arene)]2+ [arene = C6H6 (3a), C6Me6 (3b), C6H5OMe (3c)]. Similar reaction with the borole sandwich compound CpRh(η5-C4H4BPh) results in the arene-type complex [CpRh(μ-η56-C4H4BPh)Rh(η5-C9H2Me5)]2+ (4). Treatment of 2 with CpTl in acetonitrile affords cation [(η5-C9H2Me5)RhCp]+ (5). The structure of [3c](BF4)2 was determined by X-ray diffraction. The electrochemical behaviour of complexes prepared was studied. The rhodium-benzene bonding in series of the related complexes [(ring)Rh(C6H6)]2+ (ring = Cp, Cp, C9H7, C9H2Me5) was analyzed using energy and charge decomposition schemes.  相似文献   

11.
The η-hexamethylbenzenehydridoruthenium(II) complexes RuHCl(η-C6Me6)L (L = PPh3 (11), AsPh3 (12), P(C6H4-p-F)3 (14), P(C6H4-p-Me)3 (15), P(C6H4-p-OMe)3 (16), P-t-BuPh2 (17), P-i-PrPh2 (18), P-i-Pr3 (19), PCy3 (20) and P-t-BuMe2 (21)) have been made by heating [RuCl2(η-C6Me6)]2, the ligand and sodium carbonate in propan-2-ol. The triarylphosphine complexes 11, 14 and 15 react with methyllithium to give aryl ortho-metallated hydridoruthenium(II) complexes such as RuH(o-C6H4PPh2)(η-C6Me6) (22) and 19 similarly gives the isopropyl cyclometallated complex RuH(CH2CHMeP-i-Pr2(η-C6Me6) (29) as a mixture of diastereomers. Reaction of 17 with methyllithium gives initially the t-butyl cyclometallated complex RuH(CH2CMe2PPh2)(η-C6Me6) (25) which isomerizes by a first order process (k0?.2 h?1 in C6D6 or THF-d8 at 50°C) to the aryl ortho-metallated complex RuH(o-C6H4P-t-BuPh)(η-C6Me6) (26). The similarly generated isopropyl cyclometallated complex RuH(CH2CHMePPh2)(η-C6Me6) (27) has not been isolated in a pure state owing to rapid isomerization to RuH(o-C6H4P-i-PrPh)(η-C6Me6) (28); both 27 and 28 exist as a pair of diastereomers. The formation of the cyclometallated complexes and the isomerizations are thought to involve intermediate 16-electron ruthenium(O) complexes Ru(η-C6Me6)L.  相似文献   

12.
Using 4-ethynylphenylferrocene (1) as the building block, a new series of rigid-rod alkynylferrocenyl precursors consisting of fluoren-9-one unit, 2-bromo-7-(4-ferrocenylphenylethynyl)fluoren-9-one (2a), 2,7-bis(4-ferrocenylphenylethynyl)fluoren-9-one (2b), 2-trimethylsilylethynyl-7-(4-ferrocenylphenylethynyl)fluoren-9-one (3) and 2-ethynyl-7-(4-ferrocenylphenylethynyl)fluoren-9-one (4) have been prepared in moderate to good yields. The acetylene complex 4 is a useful precursor for the synthesis of well-defined carbon-rich ferrocenyl heterometallic complexes, trans-[(η5-C5H5)Fe(η5-C5H4)C6H4CCRCCPt(PEt3)2Ph] (5), trans-[(η5-C5H5)Fe(η5-C5H4)C6H4CCRCCPt(PBu3)2CCRC≡CC6H45-C5H4)Fe(η5-C5H5)] (6), trans-[(η5-C5H5)Fe(η5-C5H4)C6H4CCRCCM(dppm)2Cl] (M=Ru (7), Os (8)) (R=fluoren-9-one-2,7-diyl). All new complexes have been characterized by FTIR, NMR and UV-Vis spectroscopies and fast atom bombardment mass spectrometry (FABMS). The molecular structures of 1, 2a, 4, 6 and 8 have been determined by single-crystal X-ray studies where an ironiron through-space distance of nanosized dimension (ca. 42 Å) is observed in the trimetallic molecular rod 6. The electronic absorption, luminescence and electrochemical properties of these carbon-rich molecules were investigated and the data were correlated with the theoretical results obtained by the method of density functional theory.  相似文献   

13.
《Polyhedron》2005,24(3):391-396
The reaction of [(η5-C5Me5)Ru(PPh3)2Cl] (1) with acetonitrile in the presence of excess NH4PF6 leads to the formation of the cationic ruthenium(II) complex [(η5-C5Me5)Ru(PPh3)2(CH3CN)]PF6 (2). The complex (2) reacts with a series of N,N′ donor Schiff base ligands viz. para-substituted N-(pyrid-2-ylmethylene)-phenylamines (ppa) in methanol to yield pentamethylcylopentadienyl ruthenium(II) Schiff base complexes of the formulation [(η5-C5Me5)Ru(PPh3)(C5H4N-2-CHN-C6H4-p-X)]PF6 [3a]PF6–[3f]PF6, where C5Me5 = pentamethylcylopentadienyl, X = H, [3a]PF6, Me, [3b]PF6, OMe, [3c]PF6, NO2, [3d]PF6, Cl, [3e]PF6, COOH, [3f]PF6. The complexes were isolated as their hexafluorophosphate salts. The complexes were fully characterized on the basis of elemental analyses and NMR spectroscopy. The molecular structure of a representative complex, [(η5-C5Me5)Ru(PPh3)(C5H4N-2-CHN-C6H4-p-Cl)]PF6 [3e]PF6, has been established by X-ray crystallography.  相似文献   

14.
The novel d2 niobium nitrene complex (η-C5Me5)Nb(NAr)(PMe3)2 (Ar=2,6-iPr2C6H3) (1) is accessible via  相似文献   

15.
The photolysis of (η5-C5H5)V(CO)4 in the presence of one or two equivalents of bis(pentafluorophenyl)acetylene yields (η5-C5H5)V(CO)2(C6F5CCC6F5). One carbon monoxide ligand in this acetylene adduct can be photochemically displaced by triphenylphosphine to yield (η5-C5H5)V(CO)[P(C6H5)3](C6F5CCC6F5). This complex is also obtained by the photolysis of (η5-C5H5)V(CO)3P(C6H5)3 in the presence of bis(pentafluorophenyl)acetylene. In vacuo, melt-phase thermolysis of (η5-C5H5)V(CO)2(C6F5CCC6F5) and bis(pentafluorophenyl)acetylene produces (η5-C5H5)V(CO)(C6F5CCC6F5)2. This diacetylenic complex as well as the perfluorinated organic compounds 2,3,5,6-tetrakis(pentafluorophenyl)-1,4-benzoquinone, 2,3,4,5-tetrakis(pentafluorophenyl)cyclopentadienone and 2,3,4,5,6,7-hexakis(pentafluorophenyl)cycloheptatrienone are also obtained from thermal reactions of (η5-C5H5)V(CO)4 and bis(pentafluorophenyl)acetylene in solution. Photolysis of (η5-C5H5)V(CO)(C6F5CCC6F5)2 in the presence of carbon monoxide produces (η5-C5H5)V(CO)2(C6F5CCC6F5). The photochemical and thermal reactions of bis(pentafluorophenyl)acetylene and (η5-C5H5)V(CO)4 are compared and contrasted with similar reactions of diphenylacetylene and (η5-C5H5)V(CO)4.  相似文献   

16.
A statistical model has been employed to determine the unidirectional site epimerization probability, ε, during propylene polymerization with the following C1-symmetric metallocene precatalysts activated with MAO (MAO = methylaluminoxane): doubly-bridged rac-(1,2-SiMe2)25-C5H2-4-(CHMe(CMe3))}{η5-C5H-3,5-(CHMe2)2}ZrCl2 (1) and (1,2-SiMe2)25-C5H2-4-(1R,2S,5R-menthyl)}{η5-C5H-3,5-(CHMe2)2}ZrCl2 (2); and singly-bridged Me2C(3-(2-adamantyl)-C5H3)(C13H8)ZrCl2 (3) and Me2Si(3-(2-adamantyl)-C5H3)(C13H8)ZrCl2 (4). For 1/MAO a steep tacticity dependence on monomer concentration was found, as ε increased from 0.114 to 0.909 as [C3H6] decreased from 12.5 M to 0.5 M; similarly, ε increased for 2/MAO from 0.177 to 0.709. For 3/MAO, ε was moderately responsive to an increase in polymerization temperature, as ε increased from 0.000 to 0.485 from Tp = 0-90 °C ([C3H6] = 1.1 M). Similarly, ε increased for 4/MAO from 0.709 to 0.913 from Tp = 0-40 °C; at higher temperatures, bidirectional site epimerization was implicated.  相似文献   

17.
The complex [(η6-p-cymene)Ru(μ-Cl)Cl]21 reacts with pyrazole ligands (3a-g) in acetonitrile to afford the amidine derivatives of the type [(η6-p-cymene)Ru(L)(3,5-HRR′pz)](BF4)2 (4a-f), where L = {HNC(Me)3,5-RR′pz}; R, R′ = H (4a); H, CH3 (4b); C6H5 (4c); CH3, C6H5 (4d) OCH3 (4e); and OC2H5 (4f), respectively. The ligand L is generated in situ through the condensation of 3,5-HRR′pz with acetonitrile under the influence of [(η6-p-cymene)RuCl2]2. The complex [(η6-C6Me6)Ru(μ-Cl)Cl]22 reacts with pyrazole ligands in acetonitrile to yield bis-pyrazole derivatives such as [(η6-C6Me6)Ru (3,5-HRR′pz)2Cl](BF4) (5a-b), where R, R′ = H (5a); H, CH3 (5b), as well as dimeric complexes of pyrazole substituted chloro bridged derivatives [{(η6-C6Me6)Ru(μ-Cl) (3,5-HRR′pz)}2](BF4)2 (5c-g), where R, R′ = CH3 (5c); C6H5 (5d); CH3, C6H5 (5e); OCH3 (5f); and OC2H5 (5g), respectively. These complexes were characterized by FT-IR and FT-NMR spectroscopy as well as analytical data. The molecular structures1 of representative complexes [(η6-C6Me6)Ru{3(5)-Hmpz}2Cl]+5b, [(η6-C6Me6)Ru(μ-Cl)(3,5-Hdmpz)]22+5c and [(η6-C6Me6)Ru(μ-Cl){3(5)Me,5(3)Ph-Hpz}]22+5e were established by single crystal X-ray diffraction studies.  相似文献   

18.
Di-η6-naphthalenechromium(0) (1) reacts at 150°C with benzene to yield (η6-naphthalene)(η6-benzene)chromium(0) (3) in 76% yield. In the presence of THF, 1 undergoes Lewis base catalyzed arene exchange at 80°C. Reactions of 1 with substituted arenes yield the mixed sandwich complexes 4 and 6–10 (arene = 1,4-C6H4Me2, 1,3,5-C6H3Me3, C6Me6, 1,4-C6H4(OMe)2, 1,4-C6H4F2 and 1,4-C10H6Me2). In all but one case (with 1,4-dimethylnaphthalene) exchange of a single naphthalene ligand is observed. In marked contrast to the lability of 1, dimesitylenechromium(0) (5) is inert to arene displacement in benzene up to 240°C. The molecular structure of 3 has been determined by X-ray crystallography. The crystal data are as follows: a 7.784(1), b 13.411(2), c 22.772(5) Å, Z = 8, space group Pbca. The structure was refined to a Rw value of 0.043. The naphthalene ligand in 3 is nearly planar and parallel to the approximately eclipsed benzene ring. Metal atom-ring distances are 1.631(9) and 1.611(4) Å for naphthalene and benzene, respectively. Catalyzed and uncatalyzed naphthalene exchanges in the sandwich complex are compared to the analogous reactions with the Cr(CO)3 complex 2. Naphthalene exchange in 2 in benzene is 103 to 104 times faster than arene exchange in other arenetricarbonylchromium compounds. The mild conditions for Lewis base catalyzed naphthalene exchange make 2 a good precursor of other arenetricarbonylchromium compounds. Examples include the Cr(CO)3 complexes of styrene, benzocyclobutene, 1-ethoxybenzocyclobutene, 1,8-dimethoxy-9,10-dihydroanthracene and 1,4-dimethylnaphthalene.  相似文献   

19.
The mononuclear cationic complexes [(η6-C6H6)RuCl(L)]+ (1), [(η6-p-iPrC6H4Me)RuCl(L)]+ (2), [(η5-C5H5)Ru(PPh3)(L)]+ (3), [(η5-C5Me5)Ru(PPh3)(L)]+ (4), [(η5-C5Me5)RhCl(L)]+ (5), [(η5-C5Me5)IrCl(L)]+ (6) as well as the dinuclear dicationic complexes [{(η6-C6H6)RuCl}2(L)]2+ (7), [{(η6-p-iPrC6H4Me)RuCl}2(L)]2+ (8), [{(η5-C5H5)Ru(PPh3)}2(L)]2+ (9), [{(η5-C5Me5)Ru(PPh3)}2(L)]2+ (10), [{(η5-C5Me5)RhCl}2(L)]2+ (11) and [{(η5-C5Me5)IrCl}2(L)]2+ (12) have been synthesized from 4,4′-bis(2-pyridyl-4-thiazole) (L) and the corresponding complexes [(η6-C6H6)Ru(μ-Cl)Cl]2, [(η6-p-iPrC6H4Me)Ru(μ-Cl)Cl]2, [(η5-C5H5)Ru(PPh3)2Cl)], [(η5-C5Me5)Ru(PPh3)2Cl], [(η5-C5Me5)Rh(μ-Cl)Cl]2 and [(η5-C5Me5)Ir(μ-Cl)Cl]2, respectively. All complexes were isolated as hexafluorophosphate salts and characterized by IR, NMR, mass spectrometry and UV-vis spectroscopy. The X-ray crystal structure analyses of [3]PF6, [5]PF6, [8](PF6)2 and [12](PF6)2 reveal a typical piano-stool geometry around the metal centers with a five-membered metallo-cycle in which 4,4′-bis(2-pyridyl-4-thiazole) acts as a N,N′-chelating ligand.  相似文献   

20.
The solvento species obtained by treatment of the complexes [Rh(1,5-cyclooctadiene)Cl]2, [Rh(norbornadiene)Cl]2, [Rh(CO)2Cl]2, C5H5Rh(CO)I2, [C5Me5RhCl2]2, and [Ru(C6H6)Cl2]2 with AgPF6 in acetone or acetonitrile react with a large excess of Me2NNS to give the compounds [Rh(1,5-C8H12)-(SNNMe2)2]PF6 (1a), [Rh(C7H8)(SNNMe2)2]PF6 (1b), [Rh(CO)2(SNNMe2)2]PF6 (2), [C5H5Rh(SNNMe2)3](PF6)2 (3), [C5Me5Rh(SNNMe2)3](PF6)2 (4), and [Ru(C6H6(SNNMe2)3](PF6) (5). If the thionitroso ligand is not preent in large excess decomposition often occurs. The use of AgClO4 allows isolation of the perchlorate salts of 1a, 1b, 2, 4, and 5, and the complexes [C5H5Rh-(SNNMe2)2(ClO4)ClO4 (6) and Rh(1,5-C8H12)(SNNMe2)(ClO4) (7). In the H1 NMR spectra the methyl protons of Me2NNS are observed as two quadruplets, in the range δ 3.75–4.25 (4J(HH) ca. 0.7 Hz) because of restricted rotation around the NN bond. The rhodium(I) complexes (1a, 1b, and 2) reacts with PPh3 or p-tolylPPh2 to give labile products, and only [Rh(1,5-C8H12)(SNNMe2)(PPh3)]ClO4 (8) and [Rh(1,5-C8H12)(SNNMe2)(p-tolylPPh2)]ClO4 (9) were isolated and characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号