首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intense purple colored bi- and trimetallic complexes {Ti}(CH2SiMe3)[CC(η6-C6H5)Cr(CO)3] (3) ({Ti}=(η5-C5H5)2Ti) and [Ti][CC(η6-C6H5)Cr(CO)3]2 (5) {[Ti]=(η5-C5H4SiMe3)2Ti}, in which next to a Ti(IV) center a Cr(0) atom is present, are accessible by the reaction of Li[CC(η6-C6H5)Cr(CO)3] (2) with {Ti}(CH2SiMe3)Cl (1) or [Ti]Cl2 (4) in a 1:1 or 2:1 molar ratio. The chemical and electrochemical properties of 3, 5, {Ti}(CH2SiMe3)(CCFc) [Fc=(η5-C5H5)Fe(η5-C5H4)] and [Ti][(CC)nMc][(CC)mM′c] [n, m=1, 2; n=m; nm; Mc=(η5-C5H5)Fe(η5-C5H4); M′c=(η5-C5H5)Ru(η5-C5H4); Mc=M′c; Mc≠M′c] will be comparatively discussed.  相似文献   

2.
The following compounds were prepared and their pyrolysis in a stream of argon was studied: (η5-C5H5)2Ti(C?CC6H5)2, (η5-C5H4SiMe3)2-Ti(SH)2, [(η5-C5H5)Ti(μ-CH2)]2, (η5-C5H5)2ZrR2-(R?CH2, CH2C6H5, N(CH3)2), (η5-C5H4CH3)2-Zr(C?CC6H5)2, [(η5-C5H4SiMe3)2Zr(μ-S)]2, [(η5-C5H4SiMe3)2Hf(μ-S)]2 and (η5-C5H4SiMe3)2Hf-(C?CC6H5)2. The products of bulk pyrolysis of these materials were formed in 20–40% yield, based on the charged sample weight, and consisted mainly of titanium carbide together with small amounts of amorphous carbon.  相似文献   

3.
The new methylidene trinickel cluster complexes, [RCNi35-C5H53] (R  CMe3 or SiMe3) and [Me3SiCNi35-C5H5)2(η5-C5H4CH2SiMe3)] have been isolated in low yield from reactions between nickelocene and the corresponding alkyllithium reagents, RCH2Li. The compounds [RCNi35-C5H5)3] (R  Ph, CMe3 or SiMe3) have also been obtained by treatment of the σ-alkylnickel complexes [(η5-C5H5)Ni(CH2R)(PPh3)] with n-BuLi in the presence of an excess of nickelocene, but under similar conditions [(η5-C5H5)Ni(CH2C1OH7-2)-(PPh3)] (where C1OH7-2  2-naphthyl) failed to give [2-C1OH7CNi35-C5H5)3]. The attempted synthesis of [(η5-C5H5)Ni(CH2CCH)(PPh3)] from [(η5-C5H5)-NiBr(PPh3)] and CHCCH2MgBr gave only [(η5-C5H5)Ni(CCMe)(PPh3)] by an unusual rearrangement reaction.  相似文献   

4.
The reduction of Nb(η5-C5H4SiMe3)2Cl2 (I) with Na/Hg in a 1/1 molar ratio gives Nb(η5-C5H4SiMe3)2Cl (II). Reactions of II with some cumulenes give the corresponding niobocene derivatives with the functional groups anchored to the bis(trimethylsilylcyclopentadienyl)niobium unit, Nb(η5-C5H4SiMe3)2Cl(CS2), Nb(η5-C5H4SiMe3)2Cl(PhNCX) (X = O or S) and Nb(η3-C5H4SiMe3)2Cl(CyCN- Cy). The imido compound Nb(η5-C5H4SiMe3)2Cl(NPh) has been prepared. The chemical properties and structural features of the compounds are described.  相似文献   

5.
Reactions of ketenes (R1R2CCO) with (η5-C5H5)Ni(PPh3)CCR (I) and (η5-C5H5)Fe(CO)(L)CCR (III, L = CO and PPh3) give σ-cyclobut-1-en-3-onyl complexes, {(η5-C5H5)Ni(PPh3)CC(R)COC}R1R2 (VI) and (η5-C5H5)Fe(CO)(L)CC(R)COCR1R2 (IX)}, (2 + 2) cycloaddition products, in good yields. The σ-cyclobutenonyl complexes also can be prepared by the reaction of I and III with acyl chlorides in the presence of triethylamine.  相似文献   

6.
The 2,6-di-t-butyl-4-methylphenoxo ligand (ArO?) is ambidentate, giving rise to the O-bonded 15-electron d1 [Ti(η-C5H5)2OAr] and the η5 -[C(2)-C(6)]-bonded 18-electron d8 complex [Rh(ArO-η5)(PPh3)2], obtained from [{Ti(η-C5H5)2Cl}2]-LiO Ar and [Rh{N(SiMe3)2}(PPh3)2]-ArOH, respectively; the average TiC(η) distance is 2.362(10) Å, TiO 1.892(2) Å, and O:C(of Ar) 1.352(3) Å, and TiOC 142.3(2)°; in the RhI complex, C(2)C(6) are coplanar (with CC(av.) 1.38(2) Å). C(1)O 1.28 Å, and Rh to C(2) C(6) bond lengthsare in the range 2.19–2.65 Å.  相似文献   

7.
Cp-functionalized monotroticenes [(η7-C7H7)Ti(η5-C5H4E)] (2, E = Ph2SiCl; 3, E = tBu2SnCl; 12, E = I) and bitroticenes [(η7-C7H7)Ti(η5-C5H4)]2E′ (5, E′ = PPh; 6, E′ = BN(SiMe3)2; 7, E′ = Cp2Ti) were prepared by salt elimination metathesis between the monolithiated troticene [(η7-C7H7)Ti(η5-C5H4Li)]·pmdta (1b) (pmdta = N,N′,N′,N″,N″-pentamethyldiethylene-triamine) and the appropriate electrophile. The troticenyl-substituted zirconocene monochloride [(η7-C7H7)Ti(η5-C5H4ZrClCp*2)] (Cp* = η5-C5Me5) (8) and hafnocene ethoxide [(η7-C7H7)Ti{η5-C5H4Hf(OEt)Cp2}] (Cp = η5-C5H5) (11), and the heterobimetallic μ-oxo complexes [(η7-C7H7)Ti(η5-C5H4MCp2)]2O (9, M = Zr; 10, M = Hf) were obtained instead of the expected zircona- and hafna[1]troticenophanes by reaction of the dilithiated troticene [(η7-C7H6Li)Ti(η5-C5H4Li)]·pmdta (1a) with [Cp2MCl2] (M = Zr, Hf) or [Cp*2ZrCl2] in stoichiometric amounts. These compounds were characterized by single crystal X-ray diffraction analyses and, in the case of 2, 3, 57, 9, 10 and 12, also by elemental analyses and 1H, 13C and 119Sn NMR spectroscopy. Exposure of the troticenyl organotin chloride 3 to moisture resulted in its partial hydrolysis and formation of the organostannoxane-bridged bitroticene 4, while palladium-catalyzed Negishi C–C cross-coupling reaction between the troticenylzinc chloride [(η7-C7H7)Ti(η5-C5H4ZnCl)] (13) and the iodotroticene 12 or iodobenzene (PhI) led to the fulvalene complexes [(η7-C7H7)Ti(η5-C5H4)]2 (14) and [(η7-C7H7)Ti(η5-C5H4Ph)] (15). Compound 4 displays an unsymmetrical structure with the troticenyl fragments cis with respect to the Sn–O–Sn core, whereas compound 14 is centrosymmetrically trans oriented.  相似文献   

8.
The catalytic activities of the highly fluorous systems formed by the zirconocene(IV) complexes [Zr{η5-C5H4SiMe2C2H4RF}2Cl2] (RF = C6F13 (4a), C10F21 (4b)) or [Zr-{η5-C5H3(SiMe2C2H4C6F13)2}2Cl2] (5a) and MMAO in toluene have been studied and compared with analogous nonfluorous systems generated from [Zr{η5-C5H4SiMe3}2Cl2] and [Zr{η5-C5H5}2Cl2]. Although less active than the reference systems, the fluorous catalysts are stable over prolonged polymerization times, giving rise to polymers with similar molecular weights to those obtained with [Zr{η5-C5H4SiMe3}2Cl2].  相似文献   

9.
The reactivity of dinuclear niobium and tantalum imido complexes with the isocyanide compound 2,6-Me2C6H3NC has been studied. The trialkyl complexes [{NbR3(CH3CN)}2(μ-1,3-NC6H4N)], [{NbR3(CH3CN)}2(μ-1,4-NC6H4N)] and [{TaR3(CH3CN)}2(μ-1,4-NC6H4N)] (R=CH2SiMe3) gave [{Nb(η2-RCNAr)2R}2(μ-1,3-NC6H4N)] (1), [{Nb(η2-RCNAr)2R}2(μ-1,4-NC6H4N)] (2) and [{Ta(η2-RCNAr)2R}2(μ-1,4-NC6H4N)] (3) (R=CH2SiMe3; Ar=2,6-Me2C6H3), from the isocyanide insertion in two of the metal alkyl carbon bonds. The reaction of the isocyanide reagent with the di-alkyl mono-cyclopentadienyl derivatives [{Nb(η5-C5H4SiMe3)R2}2(μ-1,3-NC6H4N)] (R=Me, CH2Ph, CH2SiMe3), [{Nb(η5-C5H4SiMe3)R2}2(μ-1,4-NC6H4N)] (R=Me, CH2Ph (4), CH2SiMe3) and [{Ta(η5-C5Me5)(CH2SiMe3)2}2(μ-1,4-NC6H4N)] yielded [{Nb(η5-C5H4SiMe3)(η2-RCNAr)R}2(μ-1,3-NC6H4N)] (R=Me (5), CH2Ph (6), CH2SiMe3 (7)), [{Nb(η5-C5H4SiMe3)(η2-RCNAr)R}2(μ-1,4-NC6H4N)] (R=Me (8), CH2Ph (9), CH2SiMe3 (10)) and [{Ta(η5-C5Me5)(η2-Me3SiCH2CNAr)CH2SiMe3}2(μ-1,4-NC6H4N)] (11) (Ar=2,6-Me2C6H3), respectively, from a single insertion process. The reaction with the mono-alkyl complex [{Nb(η5-C5H4SiMe3)(Me)Cl}2(μ-1,4-NC6H4N)] gave [{Nb(η5-C5H4SiMe3)(η2-MeCNAr)Cl}2(μ-1,4-NC6H4N)] (12), produced from the isocyanide insertion in the metal-alkyl carbon bond. The alkyl-amido complex [{Nb(η5-C5H4SiMe3)(Me)NMe2}2(μ-1,4-NC6H4N)] gave, from the preferential isocyanide insertion in the metal-amide nitrogen bond, [{Nb(η5-C5H4SiMe3)(η2-Me2NCNAr)Me}2(μ-1,4-NC6H4N)] (13). The molecular structure of one of the alkyl precursors, [{Nb(η5-C5H4SiMe3)(CH2Ph)2}2(μ-1,4-NC6H4N)] (4), has been determined.  相似文献   

10.
The photolysis of (η5-C5H5)V(CO)4 in the presence of one or two equivalents of bis(pentafluorophenyl)acetylene yields (η5-C5H5)V(CO)2(C6F5CCC6F5). One carbon monoxide ligand in this acetylene adduct can be photochemically displaced by triphenylphosphine to yield (η5-C5H5)V(CO)[P(C6H5)3](C6F5CCC6F5). This complex is also obtained by the photolysis of (η5-C5H5)V(CO)3P(C6H5)3 in the presence of bis(pentafluorophenyl)acetylene. In vacuo, melt-phase thermolysis of (η5-C5H5)V(CO)2(C6F5CCC6F5) and bis(pentafluorophenyl)acetylene produces (η5-C5H5)V(CO)(C6F5CCC6F5)2. This diacetylenic complex as well as the perfluorinated organic compounds 2,3,5,6-tetrakis(pentafluorophenyl)-1,4-benzoquinone, 2,3,4,5-tetrakis(pentafluorophenyl)cyclopentadienone and 2,3,4,5,6,7-hexakis(pentafluorophenyl)cycloheptatrienone are also obtained from thermal reactions of (η5-C5H5)V(CO)4 and bis(pentafluorophenyl)acetylene in solution. Photolysis of (η5-C5H5)V(CO)(C6F5CCC6F5)2 in the presence of carbon monoxide produces (η5-C5H5)V(CO)2(C6F5CCC6F5). The photochemical and thermal reactions of bis(pentafluorophenyl)acetylene and (η5-C5H5)V(CO)4 are compared and contrasted with similar reactions of diphenylacetylene and (η5-C5H5)V(CO)4.  相似文献   

11.
The compounds [M{(CH2)4C(η-C5H4)2}(η-C5H5)Cl] (M=Zr*, Hf), [M{(CH2)4C(η-C5H4)2}(η-C5H5)Me] (M=Zr, Hf), [(η-C5H5)MCl2{(CH2)4C(η-C5H4)2}MCl2(η-C5H5)] (M=Zr, Hf), [(η-C5H5)ZrCl2{(CH2)4C(η-C5H4)(η-C9H6)}ZrCl2(η-C5H5)], [(η-C5H5)MMe2{(CH2)4C(η-C5H4)2}MMe2(η-C5H5)] (M=Zr, Hf), [(η-C5H5)ZrCl2{(CH2)4C(η-C5H4)2}HfCl2(η-C5H5)], [(η-C5H5)MCl2{(CH2)4C(η-C5H4)2}Rh(η-C8H12)] (M=Zr*, Hf), [(η-C5H5)ZrCl2{(CH2)4C(η-C5H4)2}TiCl3], [(η-C5H5)ZrMe2{(CH2)4C(η-C5H4)2}HfMe2(η-C5H5)], [(η-C5H5)MMe2{(CH2)4C(η-C5H4)2}Rh(η-C8H12)] (M=Zr*, Hf) have been prepared and characterised. * indicates the crystal structure has been determined. Their catalytic properties for ethene and propene polymerisation have been explored.  相似文献   

12.
Variable-temperature 1H NMR studies have revealed that in 1,1′,3,3′-tetrakis(trimethylsilyl)ferrocene, Fe[η5-C5H3(SiMe3)2-1,3]2, as well as in 1,1′,3,3′-tetrakis(trimethylsilyl)titanocene dichloride, Ti[η5-C5H3(SiMe3)2-1,3]2Cl2, the rotation of the five-membered ring about the metal-ring vector is hindered at lower temperatures. The titanocene complex was prepared from TiCl3 and bis(trimethylsilyl)cyclopentadienyllithium via Ti[η5-C5H3(SiMe3)2-1,3]2Cl.  相似文献   

13.
The reaction of the tetramethylcyclopentadiene-silyl substituted derivative C5Me4(SiMe3)(SiMe2Cl) with MCl4 afforded the trichloro mono-tetramethylcyclopentadienyl complexes M(η5-C5Me4SiMe2Cl)Cl3 [M=Ti (1), Zr (2)] with selective elimination of SiMe3Cl. Compound 1 reacts with deoxygenated water in methylene chloride, with the evolution of HCl, to give the dinuclear titanium compound {Ti[μ-(η5-C5Me4SiMe2O-κO)]Cl2}2 (3), which was converted into the μ-oxo complex {Ti[μ-(η5-C5Me4SiMe2O-κO)]Cl}2(μ-O) (4) by a further hydrolysis reaction which occurred when a solution of 3 in toluene was refluxed for a long period of time in the air. Depending on the size of the alkyl ligand, reactions of the mononuclear compound 1 with an appropriate alkylating reagent rendered the peralkylated Ti(η5-C5Me4SiMe2R)R3 [R=Me (5), CH2Ph (6)] or partially alkylated {Ti[(η5-C5Me4SiMe2(CH2SiMe3)]Cl(CH2SiMe3)2} (7) compounds by a salt metathesis route. Attempts to synthesise a partially methylated or benzylated complex were unsuccessful. Treatment of the dinuclear compound 3 with four equivalents of MgClMe yielded the tetramethyl derivative {Ti[μ-(η5-C5Me4SiMe2O-κO)]Me2}2 (8), while the same reaction carried out with MgCl(CH2Ph) or Mg(CH2Ph)2·2THF gave the chloro-benzyl derivative {Ti[μ-(η5-C5Me4SiMe2O-κO)]Cl(CH2Ph)}2 (9) as an equimolar mixture of diastereomers, regardless of the molar ratio of the alkylating reagent used. All of the new compounds were characterised by elemental analysis and NMR spectroscopy.  相似文献   

14.
Trichloro methyl [Nb{η5-C5H3(SiXMe2)(SiMe3)}Cl3Me] (X = Cl, 2; Me, 3), dichloro dimethyl [Nb{η5-C5H3(SiXMe2)(SiMe3)}Cl2Me2] (X = Cl, 4; Me, 5) and tetramethyl [Nb{η5-C5H3(SiXMe2)(SiMe3)}Me4] (X = Me, 6; Cl, 7) niobium complexes were synthesized by treatment of starting tetrachloro derivatives [Nb{η5-C5H3(SiXMe2)(SiMe3)}Cl4] (X = Cl, 1a; Me, 1b) with dimethyl zinc or chloro methyl magnesium in different proportions and conditions. A mixture of trichloro methyl and dichloro dimethyl tantalum complexes [Ta{η5-C5H3(SiClMe2)(SiMe3)}Cl4−xMex] (x = 1, 8; 2, 9) in a 2:1 molar ratio was obtained in the reaction of [Ta{η5-C5H3(SiClMe2)(SiMe3)}Cl4] (1c) with 0.5 equivalents of ZnMe2 in toluene at low temperature. 8 could be isolated as single compound when 1 equivalent of 1c was added to the mixtures of 8 and 9, while the reaction of 1c with 1.5 equivalents of dimethyl zinc gave 9 as unitary product. However, [Ta{η5-C5H3(SiMe3)2}Cl4] (1d) reacts with 0.5 equivalents of alkylating reagent giving the trichloro methyl compound [Ta{η5-C5H3(SiMe3)2}Cl3Me] (10) in good yield. On the other hand, [Ta{η5-C5H3(SiMe3)2}Cl4] (1d) reacts with 2 equivalents of MgClMe in hexane at room temperature giving a mixture of dichloro dimethyl and chloro trimethyl complexes[Ta{η5-C5H3(SiMe3)2}Cl4−xMex] (x = 2, 11; 3, 12), while the use of 4 equivalents of MgClMe converts 1c into the tetramethyl derivative [Ta{η5-C5H3(SiClMe2)(SiMe3)}Me4] (13). Finally, a tetramethyl tantalum complex [Ta{η5-C5H3(SiMe3)2}Me4] (14) was prepared by reaction of [Ta{η5-C5H3(SiXMe2)(SiMe3)}Cl4] (X = Cl, 1c; Me, 1d) with 5 (X = Cl) or 4 (X = Me) equivalents of MgClMe in diethyl ether (X = Cl) or hexane (X = Me), respectively, as solvent. All the complexes were studied by IR and NMR spectroscopy and the molecular structure of the complex 11 was determined by X-ray diffraction methods.  相似文献   

15.
Five binuclear half-sandwich cobalt complexes, [(η5-C5H4)Co(CO)I2]2SiMe2 (3), [(η5-C5H4)Co(S2C2B10H10)]2SiMe2 (4), [(η5-C5H4)]2Co22-S2C2B10H10)SiMe2 (5), [(η5-C5H3)CoI2](μ-I)[(η5-C5H3)Co(CO)I](SiMe2)2 (8), [(η5-C5H3)Co(S2C2B10H10)]2(SiMe2)2 (9), were successfully synthesized in moderate yield by the reactions of corresponding ligands, (C5H5)2SiMe2 (1) and (C5H4)2(SiMe2)2 (6), respectively. The molecular structures of 3, 5, 6, 8 and 9 was determined by X-ray crystallographic analysis, which distinctly depict various molecular structures containing the Cp rings and the metal centers with halide or 1,2-dicarba-closo-dodecaborane-1,2-dithiolato ligands. For the (η5-C5H4)2SiMe2 complexes, coordination of the fragments CpCo favors a exo conformation. With the rigid structure of the di-bridged ligand (C5H4)2(SiMe2)2, only cis isomers of the corresponding (η5-C5H3)2(Si2Me2)2 complexes are formed. All the complexes have been well characterized by elemental analysis, NMR and IR spectra.  相似文献   

16.
Four titanium(IV) carboxylate complexes [Ti(η5-C5H5)2(O2CCH2SMes)2] (1), [Ti(η5-C5H4Me)2(O2CCH2SMes)2] (2), [Ti(η5-C5H5)(η5-C5H4SiMe3)(O2CCH2SMes)2] (3) and [Ti(η5-C5Me5)(O2CCH2SMes)3] (4; Mes = 2,4,6-Me3C6H2) have been synthesised by the reaction of the corresponding titanium derivatives [Ti(η5-C5H5)2Cl2], [Ti(η5-C5H4Me)2Cl2], [Ti(η5-C5H5)(η5-C5H4SiMe3)Cl2] and [Ti(η5-C5Me5)Cl3] and two (for 13) or three (for 4) equivalents of mesitylthioacetic acid. Complexes 14 have been characterized by spectroscopic methods and the molecular structure of the complexes 1, 2 and 4 have been determined by X-ray diffraction studies. The cytotoxic activity of 14 was tested against tumor cell lines human adenocarcinoma HeLa, human myelogenous leukemia K562, human malignant melanoma Fem-x, and normal immunocompetent cells, that is peripheral blood mononuclear cells PBMC and compared with those of the reference complexes [Ti(η5-C5H5)2Cl2] (R1), [Ti(η5-C5H4Me)2Cl2] (R2), [Ti(η5-C5H5)(η5-C5H4SiMe3)Cl2] (R3) and cisplatin. In all cases, the cytotoxic activity of the carboxylate derivatives was higher than that of their corresponding dichloride analogues, indicating a positive effect of the carboxylato ligand on the final anticancer activity. Complexes 14 are more active against K562 (IC50 values from 72.2 to 87.9 μM) than against HeLa (IC50 values from 107.2 to 142.2 μM) and Fem-x cells (IC50 values from 90.2 to 191.4 μM).  相似文献   

17.
(η-C5H5)(CO)2W[(η3-C5H5)(C5H5)2], I, containing two tilted five-membered rings, is converted into the bridged ferrocene derivative (η-C5H5)(CO)2W{(η3-C5H5)}[(η-C5 H4)2Fe]} II by successive reaction with Na and FeCl2.  相似文献   

18.
The synthesis and properties of heterobimetallic Ti-M complexes of type {[[Ti](μ-η12-CCSiMe3)][M(μ-η12-CCSiMe3)(CO)4]} (M = Mo: 5, [Ti] = (η5-C5H5)2Ti; 6, [Ti] = (η5-C5H4SiMe3)2Ti; M = W: 7, [Ti] = (η5-C5H5)2Ti; 8, [Ti] = (η5-C5H4SiMe3)2Ti) and {[Ti](μ-η12-CCSiMe3)2}MO2 (M = Mo: 13, [Ti] = (η5-C5H5)2Ti; 14, [Ti] = (η5-C5H4SiMe3)2Ti). M = W: 15, [Ti] = (η5-C5H5)2Ti; 16, [Ti] = (η5-C5H4SiMe3)2Ti) are reported. Compounds 5-8 were accessible by treatment of [Ti](CCSiMe3)2 (1, [Ti] = (η5-C5H5)2Ti; 2, [Ti] = (η5-C5H4SiMe3)2Ti) with [M(CO)5(thf)] (3, M = Mo; 4, M = W) or [M(CO)4(nbd)] (9, M = Mo; 10, M = W; nbd = bicyclo[2.2.1]hepta-2,5-diene), while 13-16 could be obtained either by the subsequent reaction of 1 and 2 with [M(CO)3(MeCN)3] (11, M = Mo; 12, M = W) and oxygen, or directly by oxidation of 5-8 with air. A mechanism for the formation of 5-8 is postulated based on the in-situ generation of [Ti](CCSiMe3)((η2-CCSiMe3)M(CO)5), {[Ti](μ-η12-CCSiMe3)2}-M(CO)4, and [Ti](μ-η12-CCSiMe3)((μ-CCSiMe3)M(CO)4) as a result of the chelating effect exerted by the bis(alkynyl) titanocene fragment and the steric constraints imposed by the M(CO)4 entity.The molecular structure of 5 in the solid state were determined by single crystal X-ray diffraction analysis. In doubly alkynyl-bridged 5 the alkynides are bridging the metals Ti and Mo as a σ-donor to one metal and as a π-donor to the other with the [Ti](CCSiMe3)2Mo core being planar.  相似文献   

19.
The synthesis of titanocenedichloride end-grafted carbosiloxane dendrimers of the 1st and 2nd generation is reported. To find the optimal reaction conditions, Me2ClSiH (1) was reacted with (η5-C5H4SiMe2CHCH2)(η5-C5H5)TiCl2 (2). The best result could be obtained with the Karstedt catalyst, whereby exclusively the β-isomer ((η5-C5H4SiMe2CH2CH2SiMe2Cl)(η5-C5H5)TiCl2, 3) is formed. Under similar conditions Me3SiOCH(Me)(CH2)4SiMe2H (4) reacts with 2 to give (η5-C5H4SiMe2CH2CH2SiMe2(CH2)4CH-(Me)OSiMe3)(η5-C5H5)TiCl2 (5). When using MeSi(OCH(Me)(CH2)4SiMe2H)3 (6), Si(OCH(Me)(CH2)4SiMe2H)4 (8) and MeSi[O(CH2)3SiMe(OCH(Me)(CH2)4SiMe2H)2]3 (10) instead of 1 and 4, the respective metallo dendrimers MeSi[OCH(Me)(CH2)4-SiMe2CH2CH2SiMe25-C5H4)(η5-C5H5)TiCl2]3 (7), Si[OCH(Me)(CH2)4SiMe2CH2CH2SiMe25-C5H4)(η5-C5H5)TiCl2]4 (9) and MeSi{O(CH2)3SiMe[OCH(Me)(CH2)4SiMe2CH2CH2SiMe25- C5H4)(η5-C5H5)TiCl2]2}3 (11) can be isolated.Compounds 3, 5, 7, 9 and 11 were characterised by elemental analysis as well as IR and NMR spectroscopy (1H, 13C{1H}, 29Si{1H}).  相似文献   

20.
The reaction of [1,4-{SiMe3(H)N}2C6Me4] (1) with 2 equivalents of LiBun followed by the addition of SiMe3Cl gave the diamine compound [1,4-{(SiMe3)2N}2C6Me4] (2). [Ta(η5-C5H4SiMe3)Cl4] reacts with 2, in a 2:1 stoichiometric ratio, to initially yield a mixture of the dinuclear, [{Ta(η5-C5H4SiMe3)Cl2}2(μ-1,4-NC6Me4N)] (3), and mononuclear, [Ta(η5-C5H4SiMe3)Cl2{NC6Me4-4-(N(SiMe3)2)}] (4), imido complexes. 3 can be obtained exclusively by submitting the reaction mixture to repeated cycles of evacuation, to remove volatiles, followed by addition of solvent and subsequent heating. The mononuclear imido complex 4 was isolated from the reaction of [Ta(η5-C5H4SiMe3)Cl4] with 2 in a 1:1 stoichiometric ratio. The molecular structure of 4 was determined by X-ray diffraction studies. [TaCl3(CH3CN)2{NC6Me4-4-(N(SiMe3)2)}] (5) has been prepared by the reaction of one molar equivalent of TaCl5 with 2 in a CH3CN/CH2Cl2 solvent mixture. The synthesis of the niobium complexes, [{Nb(η5-C5H4SiMe3)Cl2}2(μ-1,4-NC6Me4N)] (6) and [Nb(η5-C5H4SiMe3)Cl2{NC6Me4-4-(N(SiMe3)2)}] (7), was achieved in a similar manner to their tantalum analogues. The reactivity of 7 towards nucleophilic reagents, namely lithium benzamidinate, lithium (trimethylsilyl)cyclopentadienyl or lithium dimethylamide, has been studied and the following compounds prepared:[Nb(η5-C5H4SiMe3)RCl{NC6Me4-4-(N(SiMe3)2)}] (R = η5-C5H4SiMe3 (8), PhC(NSiMe3)2 (9), NMe2 (10)). In an attempt to form the hetero bimetallic complex, [{Nb(η5-C5H4SiMe3)Cl2}(μ-1,4-NC6Me4N){Ta(η5-C5H4SiMe3)Cl2}] (11), the reaction of 7 with [Ta(η5-C5H4SiMe3)Cl4] has been studied. Analysis of the reaction products showed that 11 may exist in equilibrium with the homo bimetallic complexes 3 and 6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号