首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The mechanism of the OH‐initiated oxidation of isoprene in the presence of NO and O2 has been investigated using a discharge‐flow system at 298 K and 2 torr total pressure. OH radical concentration profiles were measured using laser‐induced fluorescence as a function of reaction time. The rate constant for the reaction of OH + isoprene was measured to be (1.10 ± 0.05) × 10−10 cm3 mol−1 s−1. In the presence of NO and O2, regeneration of OH radicals by the reaction of isoprene‐based peroxy radicals with NO was measured and compared to simulations of the kinetics of this system. The results of these experiments are consistent with an overall rate constant of 9 × 10−12 cm3 mol−1 mol−1 (with an uncertainty factor of 2) for the reaction of isoprene‐based hydroxyalkyl peroxy radicals with NO. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 637–643, 1999  相似文献   

3.
We report cavity ringdown spectra of lithium vapour generated in the heat-pipe oven. Evaluation of ringdown decay curves in early and late time windows gives the change of absorption peak values as well as in the line shape profiles. Pronounced dips in the line center occur depending on molecular densities, injected laser pulse energies and chosen time window.  相似文献   

4.
We present a new reaction path without significant barriers for the C + NO reaction, forming ground state N((4)S) and CO. Electronic structure (CASPT2) calculations have been performed for the two lowest (4)A' states of the CNO system. The lowest of these states shows no significant barriers against reaction in the C + NO or O + CN channels. This surface has been fitted to an analytical function using a many-body expansion. Using this surface, and the previously published (2)A' and (2)A' surfaces [Andersson et al., Phys. Chem. Chem. Phys., 2000, 2, 613; Andersson et al., Chem. Phys., 2000, 259, 99], we have performed quasiclassical trajectory (QCT) calculations, obtaining rate coefficients for the C((3)P) + NO(X(2)Pi) --> CO(X(1)Sigma(+)) + N((4)S,(2)D) and C((3)P) + NO(X(2)Pi) --> O((3)P) + CN(X(2)Sigma(+)) reactions. We have also simulated the crossed molecular beam experiments of Naulin et al. [Chem. Phys., 1991, 153, 519] The inclusion of the (4)A' surface in the QCT calculations gives excellent agreement with experiments. This is the first time an adiabatic pathway from C((3)P) + NO(X(2)Pi) to CO(X(1)Sigma(+))+N((4)S) has been reported.  相似文献   

5.
The kinetics of reactions of HCCl with NO and NO2 were investigated over the temperature ranges 298–572 k and 298–476 k, respectively, using laser‐induced fluorescence spectroscopy to measure total rate constants and time‐resolved infrared diode laser absorption spectroscopy to probe reaction products. Both reactions are fast, with k(HCCl + NO) = (2.75 ± 0.2) × 10?11 cm3 molecule?1 s?1 and k(HCCl + NO2) = (1.10 ± 0.2) × 10?10 cm3 molecule?1 s?1 at 296 K. Both rate constants displayed only a slight temperature dependence. Detection of products in the HCCl + NO reaction at 296 K indicates that HCNO + Cl is the major product with a branching ratio of ? = 0.68 ± 0.06, and NCO + HCl is a minor channel with ? = 0.24 ± 0.04. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 34: 12–17, 2002  相似文献   

6.
The rate constant for the reaction of hydroxyl radicals (OH) with molecular hydrogen (H2) was measured behind reflected shock waves using UV laser absorption of OH radicals near 306.69 nm. Test gas mixtures of H2 and tert‐butyl hydroperoxide (TBHP) diluted in argon were shock‐heated to temperatures ranging from 902 to 1518 K at pressures of 1.15–1.52 atm. OH radicals were produced by rapid thermal decomposition of TBHP at high temperatures. The rate constant for the title reaction was inferred by best fitting the measured OH time histories with the simulated profiles from the comprehensive reaction mechanism of Wang et al. (USC‐Mech v2.0) (2007). The measured values can be expressed in the Arrhenius equation as k1(T) = 4.38 × 1013 exp(–3518/T) cm3 mol?1 s?1 over the temperature range studied. A detailed error analysis was performed to estimate the overall uncertainty of the title reaction, and the estimated (2 – σ) uncertainties were found to be ±17% at 972 and 1228 K. The present measurements are in excellent agreement with the previous experimental studies from Frank and Just (Ber Bunsen‐Ges Phys Chem 1985, 89, 181–187), Michael and Sutherland (J Phys Chem 1988, 92, 3853–3857), Davidson et al. (Symp (Int) Combust 1988, 22, 1877–1885), Oldenborg et al. (J Phys Chem 1992, 96, 8426–8430), and Krasnoperov and Michael (J Phys Chem A 2004, 108, 5643–5648).In addition, the measured rate constant is in close accord with the non‐Arrhenius expression from GRI‐Mech 3.0 ( http://www.me.berkeley.edu/gri_mech/ ) and the theoretical calculation using semiclassical transition state theory from Nguyen et al. (Chem Phys Lett 2010, 499, 9–15).  相似文献   

7.
Electronic absorption spectra and Raman spectra of N,N-dimethyl-p-nitroaniline (DMPNA) have been measured in various fluids from the gaseous-like conditions in supercritical fluids (SCFs) to highly polar room-temperature ionic liquids (RTILs). We found that the S0-S1 absorption band center of DMPNA in RTILs is mostly determined by the molar concentrations of ions. On the other hand, the bandwidth of the absorption spectrum does not follow the expectation from a simple dielectric continuum model. Especially in SCFs, the bandwidth of the absorption spectrum decreases with increasing solvent density, suggesting that the intramolecular reorganization energy is a decreasing function of the solvent density. The Raman shift of the NO2 stretching mode has been proven to be a good indicator of the solvent polarity; i.e., the vibrational frequency of the NO2 stretching mode changes from 1340 cm-1 in mostly nonpolar solvent such as ethane to 1300 cm-1 in water. The linear relationship between the absorption band center and the vibrational frequency of the NO2 mode, which was observed for conventional liquids in a previous paper (Fujisawa, T.; Terazima, M.; Kimura, Y. J. Chem. Phys. 2006, 124, 184503), holds almost well for all fluids including SCFs and RTILs. On the other hand, the vibrational bandwidth does not show a simple relationship with the absorption band center. The vibrational bandwidths in RTILs are generally larger in comparison with those in conventional liquids with similar polarity scales. Among the RTILs we investigated, the vibrational bandwidth loosely correlates with the molecular size of the anion. A similar dependence on the anion size is also observed for the bandwidth of the absorption spectrum. We have also investigated the excitation wavelength dependence of the Raman shift of the NO2 stretching mode in RTILs. The extent of the dependence on the excitation wavelength in all fluids is well correlated with the vibrational bandwidth.  相似文献   

8.
The recombination rate constant for the NH(2)(X(2)B(1)) + NH(2)(X(2)B(1)) → N(2)H(4)(X(1)A(1)) reaction in He, Ne, Ar, and N(2) was measured over the pressure range 1-20 Torr at a temperature of 296 K. The NH(2) radical was produced by 193 nm laser photolysis of NH(3) dilute in the third-body gas. The production of NH(2) and the loss of NH(3) were monitored by high-resolution continuous-wave absorption spectroscopy: NH(2) on the (1)2(21) ← (1)3(31) rotational transition of the (0,7,0)A(2)A(1) ← (0,0,0) X(2)B(1) vibronic band and NH(3) on either inversion doublet of the (q)Q(3)(3) rotational transition of the ν(1) fundamental. Both species were detected simultaneously following the photolysis laser pulse. The broader Doppler width of the NH(2) spectral transition allowed temporal concentration measurements to be extended up to 20 Torr before pressure broadening effects became significant. Fall-off behavior was identified and the bimolecular rate constants for each collision partner were fit to a simple Troe form defined by the parameters, k(0), k(inf), and F(cent). This work is the first part of a two part series in which part 2 will discuss the measurements with more efficient energy transfer collision partners CH(4), C(2)H(6), CO(2), CF(4), and SF(6). The pressure range was too limited to extract any new information on k(inf), and k(inf) was taken from the theoretical calculations of Klippenstein et al. (J. Phys. Chem A 2009, 113, 10241) as k(inf) = 7.9 × 10(-11) cm(3) molecule(-1) s(-1) at 296 K. The individual Troe parameters were: He, k(0) = 2.8 × 10(-29) and F(cent) = 0.47; Ne, k(0) = 2.7 × 10(-29) and F(cent) = 0.34; Ar, k(0) = 4.4 × 10(-29) and F(cent) = 0.41; N(2), k(0) = 5.7 × 10(-29) and F(cent) = 0.61, with units cm(6) molecule(-2) s(-1) for k(0). In the case of N(2) as the third body, it was possible to measure the recombination rate constant for the NH(2) + H reaction near 20 Torr total pressure. The pure three-body recombination rate constant was (2.3 ± 0.55) × 10(-30) cm(6) molecule(-2) s(-1), where the uncertainty is the total experimental uncertainty including systematic errors at the 2σ level of confidence.  相似文献   

9.
Raman spectra of p-nitroaniline in supercritical water and supercritical alcohols were measured, and the effects of solvents on the NO 2 and NH 2 stretching modes were investigated. The intensity and frequency of the NO 2 stretching mode significantly changed as a function of the solvent density and temperature. The frequency of the NO 2 stretching mode correlated with the absorption peak energy of the S 1<--S 0 transition. On the other hand, the vibrational frequency of the NH 2 stretching mode did not correlate with the absorption peak shift, although it had a large frequency shift as a function of the density. The correlation between the NO 2 frequency and absorption peak energy suggested that the solvent effects of supercritical water and supercritical alcohols were similar to those for nonpolar solvents. The density functional calculation using the polarizable continuum model and p-nitroaniline-water clusters qualitatively reproduced the density dependence of the NO 2 stretching mode as well as the solvent polarity dependence. Detailed vibrational analysis revealed that the coupling between the NO 2 and C-NH 2 vibrational motions at the harmonic level has an important effect on the intensity and frequency shift of the NO 2 stretching mode. The frequency shift of the NH 2 stretching mode correlated with the degree of hydrogen bonding between the solvent molecules estimated from NMR measurements [Hoffmann M. M.; Conradi, M. S. J. Phys. Chem. B. 1998, 102, 263]. The existence of intermolecular hydrogen bonding around the NH 2 group was demonstrated even at low-density conditions.  相似文献   

10.
The primary products of n-butoxy and 2-pentoxy isomerization in the presence and absence of O(2) have been detected using pulsed laser photolysis-cavity ringdown spectroscopy (PLP-CRDS). Alkoxy radicals n-butoxy and 2-pentoxy were generated by photolysis of alkyl nitrite precursors (n-butyl nitrite or 2-pentyl nitrite, respectively), and the isomerization products with and without O(2) were detected by infrared cavity ringdown spectroscopy 20 μs after the photolysis. We report the mid-IR OH stretch (ν(1)) absorption spectra for δ-HO-1-C(4)H(8)?, δ-HO-1-C(4)H(8)OO?, δ-HO-1-C(5)H(10)?, and δ-HO-1-C(5)H(10)OO?. The observed ν(1) bands are similar in position and shape to the related alcohols (n-butanol and 2-pentanol), although the HOROO? absorption is slightly stronger than the HOR? absorption. We determined the rate of isomerization relative to reaction with O(2) for the n-butoxy and 2-pentoxy radicals by measuring the relative ν(1) absorbance of HOROO? as a function of [O(2)]. At 295 K and 670 Torr of N(2) or N(2)/O(2), we found rate constant ratios of k(isom)/k(O(2)) = 1.7 (±0.1) × 10(19) cm(-3) for n-butoxy and k(isom)/k(O(2)) = 3.4(±0.4) × 10(19) cm(-3) for 2-pentoxy (2σ uncertainty). Using currently known rate constants k(O(2)), we estimate isomerization rates of k(isom) = 2.4 (±1.2) × 10(5) s(-1) and k(isom) ≈ 3 × 10(5) s(-1) for n-butoxy and 2-pentoxy radicals, respectively, where the uncertainties are primarily due to uncertainties in k(O(2)). Because isomerization is predicted to be in the high pressure limit at 670 Torr, these relative rates are expected to be the same at atmospheric pressure. Our results include corrections for prompt isomerization of hot nascent alkoxy radicals as well as reaction with background NO and unimolecular alkoxy decomposition. We estimate prompt isomerization yields under our conditions of 4 ± 2% and 5 ± 2% for n-butoxy and 2-pentoxy formed from photolysis of the alkyl nitrites at 351 nm. Our measured relative rate values are in good agreement with and more precise than previous end-product analysis studies conducted on the n-butoxy and 2-pentoxy systems. We show that reactions typically neglected in the analysis of alkoxy relative kinetics (decomposition, recombination with NO, and prompt isomerization) may need to be included to obtain accurate values of k(isom)/k(O(2)).  相似文献   

11.
用高分辨、高速、高灵敏度的二极管激光探测法研究了高振动激发的NO2分子与NH3分子的振动能量转移,YAG532um倍频光作为NO2的激发光源,红外二极管激光(约10μ)探测NH3ν2模被激发振转能级的时间分辨的吸收光谱.实验得到NO2与NH3气压比为1:5,1:1,2:1和5:1时NH3(0100;7;k)的激发速率分别为9.28、6.42、5.05和3.65×10-1ms-1·Pa-1.在NH3压力为133Pa时,有大约6%的高振动激发NO2能量转移到NH3ν2振动模,其它大部分转移到NH3的转动和平动能.文中讨论了振动激发的机理.  相似文献   

12.
The recombination reaction H + O(2) (+M) --> HO(2) (+M) was studied by laser flash photolysis in a high pressure flow cell, over the temperature range 300-900 K, the pressure range 1.5-950 bar and in the bath gases M = He and N(2). Earlier experiments by Hahn et al. (Phys. Chem. Chem. Phys. 2004, 6, 1997) in the bath gas M = Ar were also extended. The data were analyzed in terms of unimolecular rate theory employing new calculations of relevant molecular parameters. Improved energy transfer parameters for the bath gases M = He, Ar, N(2), and H(2)O could thus be obtained and complete falloff curves were constructed. In the case of water, the high pressure rates well connect with pulse radiolysis results obtained in supercritical water by Janik et al. (J. Phys. Chem. A 2007, 111, 79).  相似文献   

13.
The photochemical behavior of the protonated simplest nitrosamine [NH2NO-H](+) has been addressed by means of the CASPT2//CASSCF methodology in conjunction with the ANO-L basis sets. The relative stability of the different tautomers, namely, (1) NH2NOH(+), (2) NH3NO(+), and (3) NH2NHO(+), has been considered, and the corresponding tautomerization transition states have been characterized. With respect to the most chemically relevant species, it has been found that NH2NOH(+) corresponds to a bound structure, while NH3NO(+) corresponds to an adduct between NH3 and NO(+) at both CASSCF and CASPT2 levels of theory. Vertical transition calculations and linear interpolations on the homolytic dissociation of NH3NO(+) in combination with previous results on neutral nitrosamine [J. Chem. Phys. 2006, 125, 164311] and neutral N,N-dimethylnitrosamine [J. Org. Chem. 2007, 72, 4741] indicate that, in acidic diluted solutions, the protonation of nitrosamine takes place on the excited surface. The N-N dissociation channels have been studied both in ground and first excited singlet state. An S1/S0 conical intersection is found to be responsible for the photostability of NH2NOH(+). On the contrary, NH3NO(+) is photochemically unstable as its first excited state is purely dissociative. The latter species is characterized by a twofold reactivity: the formation of nitrosyl cation (NO(+)) in the ground state and the photorelease of physiologically relevant nitric oxide radical (NO) in its first excited state.  相似文献   

14.
Raman spectra of N,N-dimethly-p-nitroaniline have been measured in various solvents. The Raman-Stokes shift of the band assigned to the NO2 stretching mode excited at 488 nm was found to be linearly dependent on the pi-pi* absorption band center. Furthermore, it is found that the Raman-Stokes shift of the NO2 stretching mode is dependent upon the excitation wavelength. The extent of the shift when excited at 355 versus 488 nm is almost linearly dependent on the vibrational bandwidth of the NO2 mode. The phenomenon is interpreted as the result of the solvation state selective excitation of the vibrational mode as in the case of phenol blue [Yamaguchi et al., J. Chem. Phys. 109, 9075 (1998); 109, 9084 (1998)].  相似文献   

15.
The kinetics of the O + HCNO reaction were investigated by a relative rate technique using infrared diode laser absorption spectroscopy. Laser photolysis (355 nm) of NO2 was used to produce O atoms, followed by O atom reactions with CS2, NO2, and HCNO, and infrared detection of OCS product from the O + CS2 reaction. Analysis of the experiment data yields a rate constant of k1= (9.84 +/- 3.52) x 10-12 exp[(-195 +/- 120)/T)] (cm3 molecule-1 s-1) over the temperature range 298-375 K, with a value of k1 = (5.32 +/- 0.40) x 10-12 cm3 molecule-1 s-1 at 298 K. Infrared detection of product species indicates that CO producing channels, probably CO + NO + H, dominate the reaction.  相似文献   

16.
The kinetics of the CN + HCNO reaction were studied using laser-induced fluorescence and infrared diode laser absorption spectroscopy. The total rate constant was measured to be k(T) = (3.95 +/- 0.53) x 10(-11) exp[(287.1 +/- 44.5)/T] cm3 molec(-1) s(-1), over the temperature range 298-388 K, with a value of k1 = (1.04 +/- 0.1) x 10(-10) cm3 molec(-1) s(-1) at 298 K. After detection of products and consideration of secondary chemistry, we conclude that NO + HCCN is the only major product channel.  相似文献   

17.
Intracavity laser absorption spectroscopy ("ICLAS") has been demonstrated as a feasible detection method for trace species in a discharge flow tube. This implementation has been used to measure the rate of the reaction between atomic hydrogen and NO to form HNO in helium carrier gas. A reaction rate constant of (4.3 +/- 0.4) x 10(-32) cm(6) molecule(-2) s(-1) at 295 K was measured for the reaction H + NO + M --> HNO + M (M = He). The pressure and concentration range enabled by ICLAS detection has allowed us to limit reactive pathways that would inhibit the formation of HNO. The sensitivity of ICLAS, coupled with the versatility of the discharge flow technique, suggests that intracavity absorption spectroscopy will be a useful technique for kinetics measurements on free radicals and other reactive species.  相似文献   

18.
The recombination rate constants for the reactions NH2(X2B1) + NH2(X2B1) + M → N2H4 + M and NH2(X2B1) + H + M → NH3 + M, where M was CH4, C2H6, CO2, CF4, or SF6, were measured in the same experiment over presseure ranges of 1-20 and 7-20 Torr, respectively, at 296 ± 2 K. The NH2 radical was produced by the 193 nm laser photolysis of NH3. Both NH2 and NH3 were monitored simultaneously following the photolysis laser pulse. High-resolution time-resolved absorption spectroscopy was used to monitor the temporal dependence of both species: NH2 on the (1)2(21) ← (1)3(31) rotational transition of the (0,7,0)A2A1 ← (0,0,0)X2B1 electronic transition near 675 nm and NH3 in the IR on either of the inversion doublets of the qQ3(3) rotational transition of the ν1 fundamental near 2999 nm. The NH2 self-recombination clearly exhibited falloff behavior for the third-body collision partners used in this work. The pressure dependences of the NH2 self-recombination rate constants were fit using Troe’s parametrization scheme, k(inf), k(0), and F(cent), with k(inf) = 7.9 × 10(-11) cm3 molecule(-1) s(-1), the theoretical value calculated by Klippenstein et al. (J. Phys. Chem. A113, 113, 10241). The individual Troe parameters were CH4, k(0)(CH4) = 9.4 × 10(-29) and F(cent)(CH4) = 0.61; C2H6, k(0)(C2H6) = 1.5 × 10(-28) and F(cent)(C2H6) = 0.80; CO2, k(0)(CO2) = 8.6 × 10(-29) and F(cent)(CO2) = 0.66; CF4, k(0)(CF4) = 1.1 × 10(-28) and F(cent)(CF4) = 0.55; and SF6, k(0)(SF6) = 1.9 × 10(-28) and F(cent)(SF6) = 0.52, where the units of k0 are cm6 molecule(-2) s(-1). The NH2 + H + M reaction rate constant was assumed to be in the three-body pressure regime, and the association rate constants were CH4, (6.0 ± 1.8) × 10(-30); C2H6, (1.1 ± 0.41) × 10(-29); CO2, (6.5 ± 1.8) × 10(-30); CF4, (8.3 ± 1.7) × 10(-30); and SF6, (1.4 ± 0.30) × 10(-29), with units cm6 molecule(-1) s,(-1) and the systematic and experimental errors are given at the 2σ confidence level.  相似文献   

19.
The high-pressure rate constant of the CF3 + CF3 → C2F6 reaction at T = 296 K was measured in the pulse photolysis (λ = 694.3 nm, ruby laser) of CF3NO in the presence of NO by means of the time-resolved detection of CF3NO by the intracavity absorption of He(SINGLE BOND)Ne laser radiation (λ = 632.8 nm). The obtained value is k2∞ = (3.9 ± 1.3) × 10−12 cm3/s. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
The high-resolution infrared spectrum of the weakly-bound dimer (N(2)O)(2) is studied using a rapid-scan tunable-diode laser spectrometer to probe a pulsed supersonic jet expansion. An observed band with c-type rotational structure is assigned as a combination of the intramolecular N(2)O nu(1) stretching vibration and the intermolecular out-of-plane dimer torsional vibration, with a vibrational origin at 2249.360 cm(-1). The resulting torsional frequency for the nonpolar N(2)O dimer is about 21.5 cm(-1). The present rotational analysis is completely different from that reported previously for the same band [Hecker et al., Phys. Chem. Chem. Phys., 2003, 5, 2333], which gave a band origin some 1.53 cm(-1) lower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号