首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple cation sensor 1 ((E)-9-((2-hydroxynaphthalen-1-ylimino)methyl)-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinolin-8-ol) bearing both a julolidine moiety and a naphthol moiety was designed and synthesized as a colorimetric sensor for Cu2+. In methanol solution of 1, the presence of Cu2+ led to a distinct naked-eye color change from yellow to purple. The proposed sensing mechanism might be attributed to the decrease in internal charge transfer band. Moreover, the resulting 1–Cu2+ complex sensed cyanide in a fluorometric way via fluorescent changes. These results demonstrate a novel type of the sequential recognition of Cu2+ and CN using two different sensing methods, color change, and fluorescence.  相似文献   

2.
A new versatile emissive molecular probe (3) derived from 1,5-bis(2-aminophenoxy)-3-oxopenthane bearing two units of 6-nitro-4-oxo-4H-chromene- has been prepared by a Schiff-base condensation method using conventional and green, ultrasound-aided, methods. The dry yellow powder was characterized as the imine species (3). These imine species, however, where found to rapidly convert to their enamine form (4) in solution, under the presence of water traces. This reaction was computationally studied through Density Functional Theory (DFT) in order to investigate the relative stability of the molecular pair 3/4. The sensing properties of the enamine (4) towards various metal ions were investigated via absorption and fluorometric titrations in solution in dichloromethane, acetonitrile and DMSO. The compound shows a fluorescent turn-off response in the presence of Cu2+, Zn2+, Cd2+, Hg2+ and Ag+ over the other metal ions studied, such as Li+, Na+, K+, Ca2+, Co2+ and Ni2+, being stronger for Cu2+ and Hg2+. The gas phase chemosensing abilities of (3) were also explored suggesting (3) as new active MALDI-TOF-MS matrix by two dry methods showing a strong selectivity towards Cu2+ and Ag+. Our preliminary results show promising uses of (3) supported in PPMA films as metal ion solid chemosensor.  相似文献   

3.
A new bis(8-carboxamidoquinoline) dangled binaphthol derivatized fluorescent sensor (L) was designed and synthesized. L behaves ratiometric response to Zn2+ with high selectivity accompanied by remarkable emission enhancement and red shift. The resultant L–Zn2+ complex can act as a Cu2+ sensing probe with fluorescence quenching behavior through direct Zn2+ ion replacement. Furthermore, the binding modes of Zn2+ and Cu2+ with L are elucidated by X-ray crystallographic analysis, respectively.  相似文献   

4.
A rigid conjugated pyridinylthiazole derivative (1) and two bithiazole derivatives with similar structures (2, 3) were synthesized and characterized. Their optical properties were investigated through spectral analysis. By applying the three compounds to Cu2+ ions detection, it was shown that compound 1 could be employed as a selective and sensitive Cu2+ ions fluorescent chemosensor. For aqueous assay, the nanoparticles of compound 1 were prepared in aqueous media. Compared to the monomer, 1 nanoparticles were more fluorescence sensitive to Cu2+ ions. Its binding mode with Cu2+ ions was correlated well with Langmuir equation. Compound 1 nanoparticles exhibit a dynamic working range for Cu2+ ions from 0.02 to 0.50 μM with a detection limit of 10 nM. The proposed chemosensor has been used for the direct measurement of Cu2+ content in drinking water samples with satisfying results.  相似文献   

5.
A 1,8-naphthalimide-based colorimetric fluorescence perinone dye, receptor 1 is reported herein for the selective detection of Cu2+ over the other heavy and transition metal ions. Receptor 1 shows a strong colorimetric change from orange to purple and a dramatic enhancement of fluorescence intensity due to cation-induced excited state internal charge transfer during the sensing event, that is, a dual optical response that would facilitate naked-eye detection of Cu2+.  相似文献   

6.
A coumarine–imino–C2-glucosyl conjugate (L) was synthesized and characterized. The conjugate L is found to recognize Cu2+ in aqueous HEPES buffer by exhibiting a 95% fluorescence quenching in pH range 7–10 even in the presence of several biologically and ecologically relevant metal ions. Fluorescence on–off behavior has been clearly demonstrated on the basis of the binding variability of Cu2+ to L. The binding has been elicited through the changes observed in fluorescence, absorption, ESI-MS and 1H NMR titrations. All the other thirteen metal ions studied did not show any change in the fluorescence emission. These ions do not interfere with the recognition of Cu2+ by L. The structural features of [CuL]2 complex in both the isomeric forms were established by DFT computational calculations. The utility of L has been demonstrated by showing its sensitivity toward Cu2+ on a thin layer of silica gel. The L gives sensitive fluorescence signals for Cu2+ even in blood serum and exhibits appropriate fluorescence responses in living cells.  相似文献   

7.
A perylene bisimide derivative (PBI) based colorimetric and fluorescent bifunctional probe PAM-PBI was designed and synthesized. It was highly selective and sensitive for distinguishing both Cu2+ and F from other ions through a conspicuous change of UV–vis and fluorescence spectra. The recognition of Cu2+ by PAM-PBI showed an obvious color change from rose red to purple in aqueous solution, while the sensing of F gave a marked color change from rose red to light green in THF.  相似文献   

8.
Two 4,5-disubstituted-1,8-naphthalimide derivatives 1 and 2 were synthesized as ratiometric fluorescent and colorimetric sensors for Cu2+, respectively. In 100% aqueous solutions of 1, the presence of Cu2+ induces a strong and increasing fluorescent emission centered at 478 nm at the expense of the fluorescent emission of 1 centered at 534 nm. Compound 2 senses Cu2+ by means of a colorimetric (primrose yellow to pink) method with a thorough quench in emission attributed to the deprotonation of the secondary amine conjugated to the naphthalimide fluorophore. 1-Cu2+ and 2-Cu2+ sense cyanide in ratiometric way via colorimetric and fluorescent changes.  相似文献   

9.
The synthesis, characterization, and mesomorphic properties of a new series of Schiff bases 2a-h and metal complexes 1a-h-M are prepared and their mesomorphic properties studied. Two single crystallographic structures of 2d (n=12, m=1) and 1g-Pd (n=m=12) were determined by X-ray analysis. Both compounds crystallize in a triclinic space group P−1. A dimeric structure formed by intermolecular H-bonds in 2d was observed, giving nematic phase due to a better aspect ratio. The central geometry at Pd2+ ion is nearly perfect square plane. All Schiff bases 2a-h formed N or/and SmC phases. The formation of mesophases of complexes 1a-h-M was strongly dependent on metal ions incorporated. All Cu2+, Ni2+ and Pd2+ complexes exhibited N or/and SmC phase, respectively. However, Zn2+ and Co2+ complexes were not mesogenic. The lack of mesomorphism was probably attributed to a preferred tetrahedral geometry at Zn2+ and Co2+ over a square-planar geometry at Cu2+ and Pd2+.  相似文献   

10.
A new multifunctional chemosensor 1 was synthesized and characterized by spectroscopic tools along with a single crystal X-ray crystallography. It can exhibit selective recognition responses toward Cu2+, Zn2+ and Al3+ in different solvent systems with bimodal methods (colorimetric and fluorescence). This sensor 1 detected Cu2+ ions through a distinct color change from colorless to yellow in aqueous solution. Interestingly, the receptor 1 was found to be reversible by EDTA. The detection limit (11 μM) of 1 for Cu2+ is much lower than WHO guideline (30 μM) in drinking water. In addition, the sensor 1 showed significant fluorescence enhancements in the presence of Zn2+ ion and Al3+ ion in two different organic solvents (DMF and MeCN), respectively. The binding modes of the three complexes were determined to be a 1:1 complexation stoichiometry through Job plot, ESI-mass spectrometry analysis, and 1H NMR titration.  相似文献   

11.
A series of benzyloxybenzaldehyde derivatives (1-4) were synthesized by the reactions of 4-(bromomethyl)benzonitrile with 4-hydroxy-3-methoxybenzaldehyde (vanillin), 2-hydroxy-3-methoxybenzaldehyde (o-vanillin), 2-hydroxy-4-methoxybenzaldehyde and 2-hydroxy-5-methoxybenzaldehyde. Condensation reactions among the new benzyloxybenzaldehyde derivatives (1-4) with 4′-aminobenzo-15-crown-5 yielded the new Schiff base compounds (5-8). Sodium complexes (5a-8a) and potassium complexes (5b-8b) were prepared with NaClO4 and KI, respectively. All of these synthesized compounds were characterized on the basis of FT-IR, 1H and 13C NMR, mass spectrometry and elemental analyses data. The solid state structures of compounds 8 and 5a were determined by X-ray crystallography. The extraction abilities of compounds 5-8 were also evaluated in CH2Cl2 by using several main group and transition metal picrates, such as Na+, K+, Pb2+, Cr3+, Ni2+, Cu2+ and Zn2+.  相似文献   

12.
The reaction-based fluorescent sensors have attracted increasing attention in the past decades. However, the application of these sensors for accurate sensing was significantly retarded by the background fluorescence from the sensors themselves. In this work, we demonstrated a novel strategy that the background fluorescence of the sensor could be completely eliminated by the combined effect of multiple fluorescence quenching groups. Based on this new strategy, as proof-of-principle study, a fluorescent sensor (CuFS) for Cu2+ was judiciously developed. In CuFS, three types of fluorescence quenching groups were directly tethered to a commonly used coumarin fluorophore. The fluorescence of coumarin fluorophore in CuFS was completely suppressed by the combined effect of these fluorescence quenching groups. Upon treatment with 22 μM Cu2+, sensor CuFS achieved a dramatic fluorescence enhancement (fluorescence intensity enhanced up to 811-fold) centered at 469 nm. The detection limits was determined to be 12.3 nM. The fluorescence intensity enhancement also showed a good linearity with the Cu2+ concentration in the range of 12.3 nM to 2 μM. By fabricating test strips, sensor CuFS can be utilized as a simple tool to detect Cu2+ in water samples. Furthermore, the fluorescent sensor was successfully applied in detecting different concentration of Cu2+ in living cells.  相似文献   

13.
Two novel fluorosensors of 4,5-disubstituted-N-alkyl-l,8-naphthalimide derivatives (H1, H2, H3) with double ethylenediamino receptors, double propylenediamino receptors, or one methylpiperazine receptor were synthesized, respectively. Their fluorescence and absorption in the presence or absence of nine metal ions were studied. In the presence of Ag+, H1's absorption moved to long wavelength with color change from yellow-green to red, its quenching and red shift in fluorescence were also remarkable. Similarly, H1's fluorescence was also strongly quenched in the presence of Cu2+. In addition, H1 and H2 show high pH sensitively. There was 139-folds fluorescence enhancement for H1, 22-folds for H2, and 4-folds for H3 when pH was changed from 8 to 3, respectively.  相似文献   

14.
A novel triphenylamine based oxidative chemosensor TOC was synthesized. The chromogenic and fluorogenic behaviors of TOC towards Hg2+ and Cu2+ ions in a binary mixture of MeCN/H2O (9/1) were dramatically different. TOC displays colorimetric ‘naked eye’ recognition of Hg2+ and fluorogenic ‘turn on’ response towards Cu2+ via a unique cyclization reaction using two different detection modes. Moreover, TOCAZOL obtained from the oxidative cyclization reaction of TOC with Cu(ClO4)2 can be used as a selective fluorescent sensor toward Hg2+ ion.  相似文献   

15.
New N-(pyrenylmethyl)naphtho-azacrown-5 (1) was synthesized as an ‘On-Off’ fluorescent chemosensor for Cu2+. Excited at 240 nm corresponding to the absorption of naphthalene unit (energy donor) of 1, emission at 380 nm from pyrene unit (energy acceptor) is observed, indicating that intramolecular fluorescence resonance energy transfer (FRET-On) occurs in 1. When Cu2+ is added to a solution of 1, however, the fluorescence of pyrene is strongly quenched (FRET-Off) whereas that of naphthalene group is revived. Such FRET ‘On-Off’ behavior of 1 is observed only in the case of Cu2+ binding, but not for other metal cations. The high selectivity of 1 toward Cu2+ can be potentially applied to a new kind of FRET-based chemosensor. The FRET On-Off behavior is supported by computational studies. The calculated molecular orbitals of HOMO and LUMOs suggest the excited-state interactions leading to FRET from naphthalene to pyrene in 1, but no electron density changes in 1·Cu2+ complex.  相似文献   

16.
A novel calix[4]arene derivative with two ferrocenyl Schiff-base groups at the upper rim 3 has been synthesized from 5,17-diformyl-25,27-dipropoxy-26,28-dihydroxy calix[4]arene and 4-ferrocenylaniline via condensation reaction. Reduction of 3 with sodium borohydride led to calix[4]arene derivative 4 with two amino ferrocenyl groups at the upper rim. The ferrocenyl Schiff-base calix[4]arene and its corresponding reduced amine have been purified and characterized by elemental analysis,1H NMR, FTIR, Mass and UV-vis spectral data. Electrochemical properties of compounds 3 and 4 have been investigated. Cyclic voltammograms of 3 and 4 show reversible redox couples of ferrocene/ferrocinium at E1/2=0.401 V and 0.346 V, respectively. Electrochemical studies show these redox active compounds electrochemically recognize trivalent lanthanides La3+ and Ce3+ and divalent Pb2+ and Cu2+cations. With ferrocenyl Schiff-base calix[4]arene 3 an anodic shift as large as 130 mV is observed on addition of one equivalent of Ce3+ ion. Also extraction properties of compound 4 towards some metal cations have been described. It has been observed that compound 4 has a good selectivity for metal cations Fe3+, Cu2+, Pb2+ and Cd2+ against Ni2+ and Co2+.  相似文献   

17.
Three new ditopic receptors 3a-c based on thiacalix[4]arene of 1,3 alternate conformation possessing two different complexation sites have been designed and synthesized for both soft and hard metal ions. The imino nitrogens bind soft metal ion (Ag+/Pb2+/Cu2+) and the crown moiety binds K+ ion. The preliminary investigations show that 3a-c behave as ditopic receptors for Ag+/K+, Pb2+/K+, and Cu2+/K+ ions, respectively. In all the three receptors it was observed that the formation of 3a·Ag+/3b·Pb2+/3c·Cu2+ complex triggers the decomplexation of K+ ion from crown moiety and acts as a gateway, which regulates the binding of alkali metal to crown moiety. Thus, allosteric binding between metal ions ‘switch off’ the recognition ability of crown ether ring.  相似文献   

18.
The preparation, characterization, and mesomorphic properties of two series of tridentate N-salicylidene-2-hydroxyanilines and their metal complexes were described. The crystal and molecular structure of bis[2-hydroxy-4-propyloxy-N-(2-hydroxy-3,4-dipropyloxybenzylidene) aniline]copper(II) were determined by means of X-ray analysis. It crystallizes in the monoclinic space group P2(1)/n and a Z=4. The geometry at Cu2+ ions is square pyramidal with a THF solvent molecule coordinated. The core structure was nearly flat, and the intramolecular Cu–Cu atoms were separated by ca. 3.0163(6) Å. All compounds 2a formed smectic C phases, and copper complexes 1aCu were not mesogenic. In contrast, compound 2e and complexes 1bCu, 1dCu, 1eCu, and 1ePd exhibited columnar phases. The lack of mesomorphism in 1eZn was attributed to a preferred tetrahedral over square planar geometry. A Ncell equal to 2.44–2.92, calculated from powder XRD data within a 9.0 Å thick indicated that an induced structure correlated by two catenar-shaped molecules was formed in Colh phases.  相似文献   

19.
One reaction system of Cu2+, dipn, and CN with two different molar ratio sets of 1:1:5, and 2:1:8 produced two compounds 1 [CuII(dipn)][CuII(CN)4], and 2, respectively (dipn = dipropylenetriamine). Their structures were determined by X-ray crystallography. Compound 2 is built from Cu(I) and Cu(II) centers, which are bridged by cyanide groups and metal-metal bonds. The magnetic properties of 1 and 2 were investigated in 2-300 K. Compound 1 exhibits an antiferromagnetic exchange interaction between copper(II) ions mediated by cyano-bridges.  相似文献   

20.
A series of water-soluble sulfonato-Salen-type ligands derived from different diamines including 1,2-ethylenediamine (Et-1Et-4), 1,2-cyclohexanediamine (Cy-1 and Cy-2), 1,2-phenylenediamine (Ph-1Ph-3 and PhMe-1PhMe-4), and dicyano-1,2-ethenediamine (CN-1) has been designed and prepared. Sulfonate groups of ligands ensure good stability and solubility in water without affecting their excited state properties. These ligands exhibit strong UV/Vis-absorption and blue, green, or orange fluorescence. Time-dependent-density functional theory calculations have been undertaken to reveal the influence of ligand nature, especially sulfonate groups, on the frontier molecular orbitals. Since their fluorescence is selectively quenched by Cu2+, the sulfonato-Salen-type ligands can be used as highly selective and sensitive turn-off fluorescence sensors for the detection of Cu2+ in water and fluorescence imaging in living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号