首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 932 毫秒
1.
The aqueous synthesis and electrochemical properties of nanocrystalline MxV2O5Ay·nH2O are described. It is easily and quickly prepared by precipitation from acidified vanadate solutions. MxV2O5Ay·nH2O has been characterized by X-ray powder diffraction, electron microscopy, TGA, chemical analyses, and electrochemical studies. The atomic structure is related to that of xerogel-derived V2O5·nH2O. In MxV2O5Ay·nH2O, M is a cation from the starting vanadate salt and A is an anion from the mineral acid. This material exhibits high, reversible Li capacity and may be considered for use in a cathode in primary and secondary batteries. The lithium capacity of an electrode composed of MxV2O5Ay·nH2O/EPDM/carbon (88/4/8) is ∼380(mA h)/g (C/80 rate) and the energy density is ∼1000(W h)/kg (120-μm-thick cathode, 4-1.5 V, versus Li metal anode). Critical parameters identified in the synthesis of MxV2O5Ay·nH2O, with respect to achieving high Li-ion insertion capacity, are acid/vanadium ratio, starting vanadate salt, and temperature. Inclusion of carbon black in the synthesis yields a composite that maintains the high Li capacity, lowers the electrochemical-cell polarization, and preserves the lithium capacity at higher discharge rates. Li-ion coin cells, using pre-lithiated graphite anodes, exhibit electrochemical performance comparable to that of Li-metal coin cells.  相似文献   

2.
We report the synthesis and elementary properties of the Co7Se8−xSx (x=0-8) and Ni7Se8−xSx (x=0-7) solid solutions. Both systems form a NiAs-type structure with metal vacancies. In general, the lattice parameters decrease with increasing x, but in the Ni7Se8−xSx system c increases on going from x=5 to 7. Magnetic susceptibility measurements show that all samples exhibit temperature-independent paramagnetism from 25-250 K. Samples within the Co7Se8−xSx system, as well as Ni7Se8 and Ni7SeS7, were found to be poor metals with resistivities of ∼0.20 and ∼0.06 mΩ cm at 300 K, respectively. The Sommerfeld constant (γ) was determined from specific heat measurements to be ∼13 mJ/molCoK2 and ∼7 mJ/molNiK2 for Co7Se8−xSx and Ni7Se8−xSx, respectively.  相似文献   

3.
An atomistic study is presented on the phase stability, site preference and lattice constants of the actinide intermetallic compounds Th3Co4+xAl12−x and U3Co4+xAl12−x. Calculations are based on a series of interatomic pair potentials related to the actinides and transition metals, which are obtained by a strict lattice inversion method. The lattice constants of Th3Co4+xAl12−x and U3Co4+xAl12−x are calculated for different values of x. The site preference of Co atoms at Al sites is also evaluated and the order is given as 6h, 4f, 2b and 12k for Th3Co4+xAl12−x, and 6h, 4f, 12k and 2b for U3Co4+xAl12−x. In addition, some simple mechanical properties such as the elastic constants and bulk modulus are investigated for the actinide compounds with complex structures.  相似文献   

4.
A comparative study on the oxidation and charge compensation in the AxCoO2−δ systems, A=Na (x=0.75, 0.47, 0.36, 0.12) and Li (x=1, 0.49, 0.05), using X-ray absorption spectroscopy at O 1s and Co 2p edges is reported. Both the O 1s and Co 2p XANES results show that upon removal of alkali metal from AxCoO2−δ the valence of cobalt increases more in LixCoO2−δ than in NaxCoO2−δ. In addition, the data of O 1s XANES indicate that charge compensation by oxygen is more pronounced in NaxCoO2−δ than in LixCoO2−δ.  相似文献   

5.
Two-ordered perovskites, Bi1/3Sr2/3FeO2.67 and Bi1/2Ca1/2FeO2.75, have been stabilized and characterized by transmission electron microscopy, Mössbauer spectroscopy and X-ray powder diffraction techniques. They both exhibit orthorhombic superstructures, one with ab≈2ap and c≈3ap (S.G.: Pb2n or Pbmn) for the Sr-based compound and one with ab≈2ap and c≈8ap (S.G.: B222, Bmm2, B2mm or Bmmm) for the Ca-based one. The high-resolution transmission electron microscopy (HRTEM) images evidence the existence of one deficient [FeOx] layer, suggesting that Bi1/3Sr2/3FeO2.67 and Bi1/2Ca1/2FeO2.75 behave differently compared to their Ln-based homolog. The HAADF-STEM images allow to propose a model of cation ordering on the A sites of the perovskite. The Mössbauer analyses confirm the trivalent state of iron and its complex environment with three types of coordination. Both compounds exhibit a high value of resistivity and the inverse molar susceptibility versus temperature curves evidence a magnetic transition at about 730 K for the Bi1/3Sr2/3FeO2.67 and a smooth reversible transition between 590 and 650 K for Bi1/2Ca1/2FeO2.75.  相似文献   

6.
The series Ba1−xLaxTi1−xCrxO3 (0≤x≤1) was synthesized at 1400°C for about 60 h. Their structure was carefully analyzed by the use of powder X-ray diffraction and Rietveld analysis software GSAS (General Structure Analysis System). Four solid solutions are found in this series: tetragonal solid solution Ba1−xLaxTi1−xCrxO3 (0≤x≤0.029), cubic solid solution Ba1−xLaxTi1−xCrxO3 (0.0365≤x≤0.600), rhombohedral solid solution Ba1−xLaxTi1−xCrxO3 (0.700≤x≤0.873), and orthorhombic solid solution Ba1−xLaxTi1−xCrxO3 (0.956≤x≤1). There are corresponding two-phase regions between the adjacent two solid solutions. The detailed lattice parameters are presented. The relationship between the lattice parameters and the composition of the solid solutions is developed.  相似文献   

7.
The crystal structure of the hexagonal phase KxVxMo1?xO3 (x = 0.13) has been determined by single crystal X-ray analysis. The space group is P63. The parameters are a = 10.481 Å and c = 3.701 Å. The structure is formed by triple chains of octahedra sharing corners and parallel to the Oz axis. Each triple chain shares edges with three other chains.Potassium is inserted in the large tunnels. The reliability factor is R = 0.045 on the base of 158 observed reflexions. The RbxVxMo1?xO3 and CsxVxMo1?xO3 phases (0.12 ? x ? 0.14) are isostructural with KxVxMo1?xO3.  相似文献   

8.
The structure of the phase Cs4?xYb12F40?x(0 ≤ x ≤ 1) has been determined by a single-crystal neutron diffraction study. It has been solved in the space group P63mc and refined to the best R factor of 0.0535 for the formula Cs3.4Yb12F39.4 (324 independent reflections). Three edge-sharing pentagonal bipyramids surrounding three ytterbium atoms form Yb3F16 groups and the structure is described as the superposition, according to the sequence A1A2B1B2A1A2…, of sheets of corner-sharing Yb3F16 groups with a possible transformation of bipyramids into octahedra in the A2 and B2 layers. These sheets are joined together by the axial fluorine atoms of the bipyramids or octahedra. Cesium atoms are located in the tunnels formed by their stacking. It is shown that the Cs4?xYb12F40?x phase (0 ≤ x ≤ 1) is an intermediate step of the Cs4?xYb12F40?x solid solution observed with 0 ≤ x ≤ 2 and corresponds to a superstructure of the high-temperature YbF3 phase.  相似文献   

9.
LaNi1?xCoxO3 shows itinerant d-electron behavior similar to LaNiO3 up to x = 0.5. In the range 0.5 < x < 1.0, the cobalt spin state equilibrium is markedly affected; the localized-itinerant electron transition of LaCoO3 is not seen when x < 0.95. In LaCo1?xFexO3, itinerancy of d-electrons decreases with increase in x and the compositions with x > 0.5 are similar to LaFeO3. If x > 0.1, the localized-itinerant electron transition is not seen and the cobalt spin state equilibrium is considerably altered. In LaNi1?xFexO3, itinerancy decreases with increase in x. These observations can be satisfactorily explained in terms of Goodenough's energy band schemes.  相似文献   

10.
Polycrystalline samples of the CdI2-type mixed crystals PtS2?xSex, PtSe2?xTex, and PtS2?xTex were prepared and characterized by far-infrared (4000-40 cm?1) and X-ray techniques. A change in the behavior of the c/a-ratio and in the x dependence of the plasma resonance frequency of the free carriers present is observed in the system PtS2?xSex near PtS0.6Se1.4, which is interpreted as a critical composition for (p,d)-band overlap in the platinum dichalcogenides. Optical phonon frequencies are given for the two-mode system PtS2?xSex.  相似文献   

11.
Three series of vacancy-free quaternary clathrates of type I, Ba8ZnxGe46−xySiy, Ba8(Zn,Cu)xGe46−x, and Ba8(Zn,Pd)xGe46−x, have been prepared by reactions of elemental ingots in vacuum sealed quartz at 800 °C. In all cases cubic primitive symmetry (space group Pm3?n, a∼1.1 nm) was confirmed for the clathrate phase by X-ray powder diffraction and X-ray single crystal analyses. The lattice parameters show a linear increase with increase in Ge for Ba8ZnxGe46−xySiy. M atoms (Zn, Pd, Cu) preferably occupy the 6d site in random mixtures. No defects were observed for the 6d site. Site preference of Ge and Si in Ba8ZnxGe46−xySiy has been elucidated from X-ray refinement: Ge atoms linearly substitute Si in the 24k site whilst a significant deviation from linearity is observed for occupation of the 16i site. A connectivity scheme for the phase equilibria in the “Ba8Ge46” corner at 800 °C has been derived and a three-dimensional isothermal section at 800 °C is presented for the Ba-Pd-Zn-Ge system. Studies of transport properties carried out for Ba8{Cu,Pd,Zn}xGe46−x and Ba8ZnxSiyGe46−xy evidenced predominantly electrons as charge carriers and the closeness of the systems to a metal-to-insulator transition, fine-tuned by substitution and mechanical processing of starting material Ba8Ge43. A promising figure of merit, ZT ∼0.45 at 750 K, has been derived for Ba8Zn7.4Ge19.8Si18.8, where pricey germanium is exchanged by reasonably cheap silicon.  相似文献   

12.
Partial replacement of alkaline metals in anhydrous KCa2Ta3O10 and LiCa2Ta3O10 was studied to control interlayer hydration and photocatalytic activity for water splitting under UV irradiation. A1−xNaxCa2Ta3O10·nH2O (A′=K and Li) samples were synthesized by ion exchange of CsCa2Ta3O10 in mixed molten nitrates at 400 °C. In K1−xNaxCa2Ta3O10·nH2O, two phases with the orthorhombic (C222) and tetragonal (I4/mmm) structures were formed at x?0.7 and x?0.5, respectively. Upon replacement by Na+ having a larger enthalpy of hydration (ΔHh0), the interlayer hydration occurred at x?0.3 and the hydration number (n) was increased monotonically with an increase of x. Li1−xNaxCa2Ta3O10·nH2O showed a similar hydration behavior, but the phase was changed from I4/mmm (x<0.5, n∼0) via P4/mmm (x∼0.5, n∼1) to I4/mmm (x∼1.0, n∼2). The photocatalytic activities of these systems after loading 0.5 wt% Ni were quite different each other. K1−xNaxCa2Ta3O10·nH2O exhibited the activity increasing in consistent with n, whereas Li1−xNaxCa2Ta3O10·nH2O exhibited the activity maximum at x=0.77, where the rates of H2/O2 evolution were nearly doubled compared with those for end-member compositions (x=0 and 1).  相似文献   

13.
Five series of perovskite-type compounds in the system La1−xCaxCr1−yTiyO3 with the nominal compositions y=0, x=0-0.5; y=0.2, x=0.2-0.8; y=0.5, x=0.5-1.0; y=0.8, x=0.6-1.0 and y=1, x=0.8-1 were synthesized by a ceramic technique in air (final heating 1350 °C). On the basis of the X-ray analysis of the samples with (Ca/Ti)?1, the phase diagram of the CaTiO3-LaCrIIIO3-CaCrIVO3 quasi-ternary system was constructed. Extended solid solution with a wide homogeneity range is formed in the quasi-ternary system CaCrIVO3-CaTiO3-LaCrIIIO3. The solid solution La(1−x′−y)Ca(x′+y)CrIVxCrIII(1−x′−y)TiyO3 exists by up to 0.6-0.7 mol fractions of CaCrIVO3 (x<0.6-0.7) at the experimental conditions. The crystal structure of the compounds is orthorhombic in the space group Pbnm at room temperature. The lattice parameters and the average interatomic distances of the samples within the solid solution ranges decrease uniformly with increasing Ca content. Outside the quasi-ternary system, the nominal compositions La0.1Ca0.9TiO3, La0.2Ca0.8TiO3, La0.4Ca0.6Cr0.2Ti0.8O3 and La0.3Ca0.7Cr0.2Ti0.8O3 in the system La1−xCaxCr1−yTiyO3 were found as single phases with an orthorhombic structure. In the temperature range between 850 and 1000 °C, the synthesized single-phase compositions are stable at pO2=6×10−16-0.21×105 Pa. Oxygen stoichiometry and electrical conductivity of the separate compounds were investigated as functions of temperature and oxygen partial pressure. The chemical stability of these oxides with respect to oxygen release during thermal dissociation decreases with increasing Ca-content. At 900 °C and oxygen partial pressure 1×10−15-0.21×105 Pa, the compounds with x>y (acceptor doped) are p-type semiconductors and those with x<y (donor doped) and x=y are n-type semiconductors. The type and level of electrical conductivity are functions of the concentration ratios of cations occupying the B-sites of the perovskite structures: [Cr3+]/[Cr4+] and [Ti4+]/[Ti3+]. The maximum electrical conductivity at 900 °C and pO2=10−15 Pa was found for the composition La0.1Ca0.9TiO3 (near 50 S/cm) and in air at 900 °C for La0.5Ca0.5CrO3 (close to 100 S/cm).  相似文献   

14.
The indides Ce7NixGexIn6 and Pr7NixGexIn6 were synthesized from the elements by arc-melting of the components. Single crystals were grown via special annealing sequences. Both structures were solved from X-ray single crystal diffraction data: new structure type, P6/m, Z=1, a=11.385(2), c=4.212(1) Å, wR2=0.0640, 634F2 values, 25 variables for Ce7Ni4.73Ge3.27In6 and a=11.355(6), c=4.183(2) Å, wR2=0.0539, 563F2 values, 25 variables for Pr7Ni4.96Ge3.04In6. Both indides show homogeneity ranges through Ni/Ge mixing (M sites). This new structure type can be derived from the AlB2 structure type by a substitution of the Al and B atoms by CeM12 and NiIn6Ce3 polyhedra (tricapped trigonal prism). Magnetic susceptibility measurements on a polycrystalline sample of Ce7Ni5Ge3In6 indicated Curie-Weiss like paramagnetic behavior down to 1.71 K with the effective magnetic moment slightly reduced in relation to the value expected for trivalent cerium ions. No magnetic ordering is evident.  相似文献   

15.
Nitrogen substituted yellow colored anatase TiO2−xNx and Fe-N co-doped Ti1−yFeyO2−xNx have been easily synthesized by novel hydrazine method. White anatase TiO2−δ and N/Fe-N-doped samples are semiconducting and the presence of ESR signals at g ∼1.994-2.0025 supports the oxygen vacancy and g∼4.3 indicates Fe3+ in the lattice. TiO2−xNx has higher conductivity than TiO2−x and Fe/Fe-N-doped anatase and the UV absorption edge of white TiO2−x extends in the visible region in N, Fe and Fe-N co-doped TiO2, which show, respectively, two band gaps at ∼3.25/2.63, ∼3.31/2.44 and 2.8/2.44 eV. An activation energy of ∼1.8 eV is observed in Arrhenius log resistivity vs. 1/T plots for all samples. All TiO2 and Fe-doped TiO2 show low 2-propanol photodegradation activity but have significant NO photodestruction capability, both in UV and visible regions, while standard Degussa P-25 is incapable in destroying NO in the visible region The mid-gap levels that these N and Fe-N-doped TiO2 consist may cause this discrepancy in their photocatalytic activities.  相似文献   

16.
17.
Subsolidus phase relations at ambient atmospheric pressure and elevated temperatures in the Ba1?ySryMnO3?x system were investigated by quenching, gravimetric, and X-ray diffraction methods. The system is not binary above ~1035°C because of reactions with atmospheric oxygen. The air isolar, PO2 = 0.2 atm, was characterized at 1225, 1375, 1490, and 1610°C. Seven oxygen-deficient phases including a perovskite phase characterize the system. Their stability depends on the values of y and x in Ba1?ySryMnO3?x. The cell dimensions of these phases expand as x increases at fixed y. These seven modifications can be retained in stoichiometric form by oxidation at lower temperatures.  相似文献   

18.
The n=1, 2, 3 and members of the homologous series Srn+1FenO3n+1 of layered iron oxides are investigated for their tendency to accept additional layers of water in their crystals. The phases possess a Ruddlesden-Popper-type SrO-(SrO-FeO2)n crystal structure, where the n= limit is nothing but the perovskite structure. It is revealed that the n=1, 2 and 3 phases readily accommodate one or two layers of water between adjacent SrO layers, whereas the n= member which lacks the SrO-SrO double-layer unit remains intact in the presence of water. The speed of the water intercalation process is found to decrease with increasing n. Among the layered water derivatives, the n=2 phase with two water molecules per formula unit, i.e. Sr3Fe2O7·2H2O, was found to be most stable.  相似文献   

19.
Compounds A2/3A1/3M2XO8 (A=Tl, Rb, Cs; A′=Na, Ag; M=Nb, Ta; X=P, As) have been synthesized using the ceramic method. The sodium and potassium compounds (A= Na and K) have been prepared by an ion exchange reaction starting from their thallium analogues. These materials are isotypic with Tl1−xNaxNb2PO8 (x=0.21) the structure of which has been determined by using X-ray single-crystal data. The space group is R32, the cell constants are aH=13.369(2), cH=10.324(3) Å and z=9. This compound is isostructural with Ca0.5+xCs2 Nb6P3O24. Its three-dimensional framework [Nb2PO8]n, built up from NbO6 octahedra and corner-sharing PO4 tetrahedra, delimits tunnels running along cH and cavities accommodating Tl+ and Na+ cations, respectively. The K2/3Na1/3Nb2PO8 structure, refined using X-ray powder data, showed that K+ cations are spread like the Tl+ ones over many sites, but more excentred from the tunnel axis. The isotypy of these compounds is also revealed by the similarity of the infrared and Raman spectra. The nonlinear optical study showed a behavior similar to that of the KDP for all the compounds. The ionic conductivity measurements gave high activation energies and low conductivity values for these materials.  相似文献   

20.
Two new compounds, La3Ru8B6 and Y3Os8B6, were synthesized by arc melting the elements. Their structural characterization was carried out at room temperature on as-cast samples by using X-ray diffractometry. According to X-ray single-crystal diffraction results these borides crystallize in Fmmm space group (no. 69), Z=4, a=5.5607(1) Å, b=9.8035(3) Å, c=17.5524(4) Å, ρ=8.956 Mg/m3, μ=25.23 mm−1 for La3Ru8B6 and a=5.4792(2) Å, b=9.5139(4) Å, c=17.6972(8) Å, ρ=13.343 Mg/m3, μ=128.23 mm−1 for Y3Os8B6. The crystal structure of La3Ru8B6 was confirmed from Rietveld refinement of X-ray powder diffraction data. Both La3Ru8B6 and Y3Os8B6 compounds are isotypic with the Ca3Rh8B6 compound and their structures are built up from CeCo3B2-type and CeAl2Ga2-type structural fragments taken in ratio 2:1. They are the members of structural series R(A)nM3n−1B2n with n=3 (R is the rare earth metal, A the alkaline earth metal, and M the transition metal). Structural and atomic parameters were also obtained for La0.94Ru3B2 compound from Rietveld refinement (CeCo3B2-type structure, P6/mmm space group (no. 191), a=5.5835(9) Å, c=3.0278(6) Å).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号