首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
(Z)-5-(2-(1H-Indol-3-yl)-2-oxoethylidene)-3-phenyl-2-thioxothiazolidin-4-one (7a-q) derivatives have been synthesized by the condensation reaction of 3-phenyl-2-thioxothiazolidin-4-ones (3a-h) with suitably substituted 2-(1H-indol-3-yl)-2-oxoacetaldehyde (6a-d) under microwave condition. The thioxothiazolidine-4-ones were prepared from the corresponding aromatic amines (1a-e) and di-(carboxymethyl)-trithiocarbonyl (2). The aldehydes (6a-h) were synthesized from the corresponding acid chlorides (5a-d) using HSnBu3.  相似文献   

2.
Chia-Fu Cheng 《Tetrahedron》2008,64(19):4347-4353
Maleic anhydride 1 of Antrodia camphorate, which can be isolated from Chinese herbal medicine, is achieved in which the longest linear sequence is only five steps, in 40% overall yield from commercially available succinic anhydride. The crucial antrodimides 3 and 2 can be readily transformed by the chemoselective reduction with Zn/AcOH and NaBH4/Ni(OAc)2·4H2O to afford the naturally occurring camphorataimides, 4 and 5, in high yields as well, respectively. This synthetic strategy can also be modified to give access to a variety of different maleic acid derivatives, himanimides 6-8.  相似文献   

3.
(E)-(1,2-Difluoro-1,2-ethenediyl)bis[tributylstannane], 3, readily undergoes a Pd(PPh3)4/CuI-catalyzed cross-coupling reaction with iodotrifluoroethene to yield (E)-octafluoro-1,3,5-hexatriene, 4, in high isomeric purity. (1Z,3E,5Z)-(1,2,3,4,5,6-Hexafluoro-1,3,5-hexenetriyl)bis[tributylstannane], 7, was sequentially prepared from (1Z,3E,5Z)-(1,2,3,4,5,6-hexafluoro-1,3,5-hexenetriyl)bis[triethylsilane], 5, which was prepared via a Pd(PPh3)4/CuI-catalyzed cross-coupling reaction of 3 with (E)-1,2-difluoro-1-iodo-2-triethylsilylethene, 6. Pd(PPh3)4/CuI cross-coupling of 7 with iodotrifluoroethene gave (3E,5E,7E)-dodecafluoro-1,3,5,7,9-decapentaene, 8.  相似文献   

4.
β-CF3-α,β-diphenylvinyl sulfide 3a was prepared stereoselectively in 77% yield from the reaction of 2 with phenyllithium at room temperature for 5 h. Oxidation of 3a with MCPBA afforded the corresponding vinyl sulfone 4a, in which (E)-4a can be crystallized in a mixture of CH2Cl2 and hexane. The addition-elimination reaction of (E)-4a with phenyllithium having substituents on the benzene ring provided 5a-j in 51-82% yields stereospecifically. Similarly, the treatment of (E)-4a with p-chloroethoxyphenyllithium in the presence of 12-crown-4 (20 mol %) at −10 °C, followed by slowly warming to room temperature, resulted in the formation of the corresponding panomifene precursor 6 in 82% yield.  相似文献   

5.
The reaction of a rhodanine derivative (=(Z)-5-benzylidene-3-phenyl-2-thioxo-1,3-thiazolidin-4-one; 1) with (S)-2-methyloxirane (2) in the presence of SiO2 in dry CH2Cl2 for 10 days led to two diastereoisomeric spirocyclic 1,3-oxathiolanes 3 and 4 with the Me group at C(2) (Scheme 2). The analogous reaction of 1 with (R)-2-phenyloxirane (5) afforded also two diastereoisomeric spirocyclic 1,3-oxathiolanes 6 and 7 bearing the Ph group at C(3) (Scheme 3). The structures of 3, 4, 6, and 7 were confirmed by X-ray crystallography (Figs. 1 and 2). These results show that oxiranes react selectively with the thiocarbonyl group (CS) in 1. Furthermore, the nucleophilic attack of the thiocarbonyl S-atom at the SiO2-activated oxirane ring proceeds with high regio- and stereoselectivity via an SN2-type mechanism.  相似文献   

6.
1-Fluoroindan-1-carboxylic acid (FICA) (1) was designed and synthesized as its methyl ester (FICA Me ester) (4) in order to develop an efficient chiral derivatizing agent (CDA) which excels α-methoxy-α-(trifluoromethyl)phenylacetic acid (MTPA) in capability. FICA Me ester (4) was prepared by fluorination of methyl 1-hydroxyindan-1-carboxylate (3) with (diethylamino)sulfur trifluoride (DAST) and derived to the esters of racemic secondary alcohols by ester exchange reaction. The resulting ΔδF value was large in the case of 2-butyl ester of FICA (5a), whereas not detectable in the case of the corresponding MTPA ester (6a). The magnitude of the ΔδH values was similar to that of MTPA esters. The diastereomers of (R)-(−)-8-phenylmenthyl ester of FICA (5i) was separated and their 1H NMR analyses revealed that the concept of the modified Mosher's method was successfully applied to 5i.  相似文献   

7.
The 1,2-bridged tricyclic cyclopropene, tricyclo[3.2.2.02,4]nona-2(4),6-diene (1), has been synthesized by the elimination of 2-bromo-4-chlorotricyclo[3.2.2.02,4]-non-6-ene (5). Cyclopropene 1 will undergo different isomerizations in ether solution and in neat conditions. Compound 1 rearranged to an anti-Bredt compound 4 via diradical mechanism in ether and tricyclic compound 6 via vinyl carbene mechanism in neat conditions. Compound 1 can be trapped with DPIBF at different temperatures yielding different results: the exo-endo adduct 2 (exo-addition from the view of the cyclopropene and endo-addition from the view of bicyclo[2.2.2]octene) is a sole product at 0°C by slowly addition of methyllithium, and the exo-endo adduct 2, endo-endo adduct 9, anti-Bredt adduct 3, and styrene 8 are isolated at ether refluxing temperature. Styrene 8 is proposed to be formed from endo-endo adduct 9 by diradical mechanism. The chemistry of exo-endo adduct 2 and endo-endo adduct 9 is as well studied. The exo-endo adduct 2 undergoes hydration in trifluoroacetic acid to generate 1,3-cis-diol 11 followed by eliminations of water and formaldehyde to give naphthalene 12. The endo-endo adduct 9 reacts with water in tetrahydrofuran-containing silica gel to yield 1,4-cis-diol 10. Both 9 and 10 react with trifluoroacetic acid to form trans-3-hydroxy trifluoroacetate 13. Compound 13 will undergo hydrolysis and isomerization to generate 1,3-cis-diol 11 in trifluoroacetic acid.  相似文献   

8.
Novel condensation reaction of tropone with N-substituted and N,N′-disubstitued barbituric acids in Ac2O afforded 5-(cyclohepta-2′,4′,6′-trienylidene)pyrimidine-2(1H),4(3H),6(5H)-trione derivatives (8a-f) in moderate to good yields. The 13C NMR spectral study of 8a-f revealed that the contribution of zwitterionic resonance structures is less important as compared with that of 8,8-dicyanoheptafulvene. The rotational barriers (ΔG) around the exocyclic double bond of mono-substituted derivatives 8a-c were obtained to be 14.51-15.03 kcal mol−1 by the variable temperature 1H NMR measurements. The electrochemical properties of 8a-f were also studied by CV measurement. Upon treatment with DDQ, 8a-c underwent oxidative cyclization to give two products, 7 and 9-substituted cyclohepta[b]pyrimido[5,4-d]furan-8(7H),10(9H)-dionylium tetrafluoroborates (11a-c·BF4 and 12a-c·BF4) in various ratios, while that of disubstituted derivatives 8d-f afforded 7,9-disubstituted cyclohepta[b]pyrimido[5,4-d]furan-8(7H),10(9H)-dionylium tetrafluoroborate (11d-f·BF4) in good yields. Similarly, preparation of known 5-(1′-oxocycloheptatrien-2′-yl)-pyrimidine-2(1H),4(3H),6(5H)-trione derivatives (14a-d) and novel derivatives 14e,f was carried out. Treatment of 14a-c with aq. HBF4/Ac2O afforded two kinds of novel products 11a-c·BF4 and 12a,c·BF4 in various ratios, respectively, while that of 14d-f afforded 11d-f. The product ratios of 11a-c·BF4 and 12a-c·BF4 observed in two kinds of cyclization reactions were rationalized on the basis of MO calculations of model compounds 20a and 21a. The spectroscopic and electrochemical properties of 11a-f·BF4 and 12a-c·BF4 were studied, and structural characterization of 11c·BF4 based on the X-ray crystal analysis and MO calculation was also performed.  相似文献   

9.
TiO2 nanoparticles were modified with porphyrin derivatives, 5-[4-benzoic acid]-10,15,20-tris[3,5-di-tert-butylphenyl]-21H,23H-porphyrin (Ar-H2P-COOH), 5-[4-benzoic acid]-10,20-tris[3,5-di-tert-butylphenyl]-21H,23H-porphyrin (H-H2P-COOH), and 5,10,15,20-tetra[4-benzoic acid]-21H,23H-porphyrin (H2P-4COOH). The porphyrin-modified TiO2 nanoparticles were deposited on nanostructured OTE/SnO2 electrode together with nanoclusters of fullerene (C60) in acetonitrile-toluene (3/1, v/v) using an electrophoretic deposition technique to afford the porphyrin-modified TiO2 composite electrode denoted as OTE/SnO2/(porphyrin-modified TiO2 nanoparticle+C60)n. The porphyrin-modified TiO2 composite electrodes have efficient light absorbing properties in the visible region, exhibiting the photoactive response under visible light excitation using redox couple. The incident photon-to-photocurrent efficiency (IPCE) values of supramolecular nanostructured electrodes of porphyrin-modified TiO2 nanoparticles with fullerene [OTE/SnO2/(Ar-H2P-COO-TiO2+C60)n, OTE/SnO2/(H-H2P-COO-TiO2+C60)n, and OTE/SnO2/(H2P-4COO-TiO2+C60)n] are much larger than those of the reference systems of porphyrin-modified TiO2 nanoparticles without C60 [OTE/SnO2/(Ar-H2P-COO-TiO2)n, OTE/SnO2/(H-H2P-COO-TiO2)n, and OTE/SnO2/(H2P-4COO-TiO2)n]. In particular, the maximum IPCE value (41%) is obtained for OTE/SnO2/(H-H2P-COO-TiO2+C60)n under the bias potential of 0.2 V versus SCE. This indicates that the formation of supramolecular complexes between porphyrins and fullerene on TiO2 nanoparticles plays an important role in improvement of the light energy conversion properties.  相似文献   

10.
The reactions of Mo2(O2CCH3)4 with different equivalents of N,N′-bis(pyrimidine-2-yl)formamidine (HL1) and N-(2-pyrimidinyl)formamide (HL2) afforded dimolybdenum complexes of the types Mo2(O2CCH3)(L1)2(L2) (1) trans-Mo2(L1)2(L2)2 (2) cis-Mo2(L1)2(L2)2 (3) and Mo2(L2)4 (4). Their UV–Vis and NMR spectra have been recorded and their structures determined by X-ray crystallography. Complexes 2 and 3 establish the first pair of trans and cis forms of dimolybdenum complexes containing formamidinate ligands. The L1 ligands in 13 are bridged to the metal centers through two central amine nitrogen atoms, while the L2 ligands in 14 are bridged to the metal centers via one pyrimidyl nitrogen atom and the amine nitrogen atom. The Mo–Mo distances of complexes 1 [2.0951(17) Å], 2 [2.103(1) Å] and 3 [2.1017(3) Å], which contain both Mo?N and Mo?O axial interactions, are slightly longer than those of complex 4 [2.0826(12)–2.0866(10) Å] which has only Mo?O interactions.  相似文献   

11.
Ramendra Pratap  Vishnu Ji Ram 《Tetrahedron》2007,63(41):10300-10308
A novel and efficient regioselective synthesis of various arylated highly congested 7-aryl-5-methylsulfanylindan-4-carbonitriles (3a-f), methyl 7-aryl-5-methylsulfanylindan-4-carboxylates (10a-e) and 7-aryl-5-methylsulfanylindan-4-carboxylic acids (11a-e) through base-catalyzed reaction of 6-aryl-4-methylsulfanyl-2-oxo-2H-pyran-3-carbonitriles (1a-f) and methyl 6-aryl-4-methylsulfanyl-2-oxo-2H-pyran-3-carboxylates (9a-e) by cyclopentanone (2) has been delineated. The synthetic potential of 2-pyranone was explored further to generate molecular diversity using 6-aryl-4-sec-amino-2-oxo-2H-pyran-3-carbonitriles (7a-h), 5,6-diaryl-4-methylsulfanyl-2-oxo-2H-pyran-3-carbonitriles (5a,b) and methyl 5,6-diaryl-4-methylsulfanyl-2-oxo-2H-pyran-3-carboxylates (12a,b) as precursors for the ring transformation by cyclopentanone to assess the effects of substituents on the course of the reaction to obtain highly congested indans, 6,7-diaryl-5-methylsulfanylindan-4-carbonitriles (6a,b), 7-aryl-5-(piperidin-1-yl)indan-4-carbonitriles (8a-h) and methyl 6,7-diaryl-5-methylsulfanylindan-4-carboxylates (13a,b).  相似文献   

12.
Two cassane diterpenoids, pulcharrin G (1) and 6β-cinnamoyl-7β-hydroxy-voucapen-5-α-ol (2), the constituents of Caesalpinia pulcherrima, were treated with BF3·OEt2 to furnish two olefinic products 3 and 4, respectively. The products were formed by elimination of water and migration of a methyl group from C-4 to C-5. The cytotoxic and antimicrobial activities of 3 and 4 were examined.  相似文献   

13.
The chemical analysis of a sample of Δ9-THC, which had been stored in an ethanol/propylene glycol solution for 5 years, resulted in the isolation of several hydroxylated Δ9-THC derivatives, the main of which were trans-cannabitriol monoethyl ether (4) and trans-propanediol ethers 7 and 8. cis-Cannabitriol monoethyl ether (5) and the oxidised derivatives 3 and 6 were detected in lesser amounts. The structure elucidation of the unprecedented cannabinoids 3, 5, 7 and 8 was achieved mainly by NMR techniques. Full NMR assignment of compounds 4 and 6 were also made. The detection of cannabitriol (6) and the corresponding solvent-adduct analogues (compounds 4-8) was in agreement with the decomposition mechanisms previously proposed for Δ9-THC. The isolation of the endoperoxide 3 represents indirect evidence of the existence of unstable precursors that were suspected to be intermediates in the non-enzymatic oxidation pathway of Δ9-THC. Both isomers of cannabitriol monoethyl ether exhibited weak affinity at either CB1 (Ki=2.25, 6.30 μM) or CB2 cannabinoid receptors (Ki=1.97, 3.13 μM), the trans isomer always being more potent than the cis isomer.  相似文献   

14.
The dinuclear platina-β-diketone [Pt2{(COMe)2H}2(μ-Cl)2] (1) was found to react with 2-(ROCH2)C5H4N (R =  Me, 2a; H, 2b) yielding a cationic mononuclear platina-β-diketone [Pt{(COMe)2H}{2-(MeOCH2)C5H4N}]Cl (3) and an acetyl(chloro)platinum(II) complex [Pt(COMe)Cl{2-(HOCH2)C5H4N}] (4), respectively. The reaction of 1 with 8-(methylthio)quinoline (5) resulted in the formation of [Pt(COMe)Cl{8-(MeS)C9H6N}] (6). The identities of all complexes were established by microanalysis, 1H, and 13C NMR spectroscopy. Single-crystal X-ray diffraction analysis showed 6 to be square-planar platinum(II) complex with N and C atoms as well as Cl and S atoms in mutually trans positions (configuration index: SP-4-2). In accordance with this, quantum chemical calculations on the DFT level of theory revealed a higher stability of complex 6 having a SP-4-2 configuration vs. the analogous complex in SP-4-3 configuration. The distinctly different reactivity of 1 with 2a on the one hand and with 2b and 5 on the other is discussed in terms of the HSAB concept and a deprotonation/reprotonation reaction.  相似文献   

15.
Irradiation of cis-1,2-dimethyl-1,2-diphenyl-1,2-disilacyclohexane (1a) in the presence of tert-butyl alcohol in hexane with a low-pressure mercury lamp bearing a Vycor filter proceeded with high stereospecificity to give cis-2,3-benzo-1-tert-butoxy-1,4-dimethyl-4-phenyl-1,4-disilacyclooct-2-ene (2a), in 33% isolated yield, together with a 15% yield of 1-[(tert-butoxy)methylphenylsilyl]-4-(methylphenylsilyl)butane (3). The photolysis of trans-1,2-dimethyl-1,2-diphenyl-1,2-disilacyclohexane (1b) with tert-butyl alcohol under the same conditions gave stereospecifically trans-2,3-benzo-1-tert-butoxy-1,4-dimethyl-4-phenyl-1,4-disilacyclooct-2-ene (2b) in 41% isolated yield, along with a 12% yield of 3. Similar photolysis of 1a and 1b with tert-butyl alcohol-d1 produced 2a and 2b, respectively, in addition to 1-[(tert-butoxy)(monodeuteriomethyl)(phenyl)silyl]-4-(methylphenylsilyl)butane. When 1a and 1b were photolyzed with acetone in a hexane solution, cis- and trans-2,3-benzo-1-isopropoxy-1,4-dimethyl-4-phenyl-1,4-disilacyclooct-2-ene (4a and 4b) were obtained in 25% and 23% isolated yield. In both photolyses, 1-(hydroxymethylphenylsilyl)-4-(methylphenylsilyl)butane (5) was also isolated in 4% and 5% yield, respectively. The photolysis of 1a with acetone-d6 under the same conditions gave 4a-d6 and 5-d1 in 18% and 4% yields.  相似文献   

16.
The reaction of N-(5-methyl-2-thienylmethylidene)-2-thiolethylamine (1) with Fe2(CO)9 in refluxing acetonitrile yielded di-(μ3-thia)nonacarbonyltriiron (2), μ-[N-(5-methyl-2-thienylmethyl)-η11(N);η11(S)-2-thiolatoethylamido]hexacarbonyldiiron (3), and N-(5-methyl-2-thienylmethylidene)amine (4). If the reaction was carried out at 45 °C, di-μ-[N-(5-methyl-2-thienylmethylidene)-η1(N);η1(S)-2-thiolethylamino]-μ-carbonyl-tetracarbonyldiiron (5) and trace amount of 4 were obtained. Stirring 5 in refluxing acetonitrile led to the thermal decomposition of 5, and ligand 1 was recovered quantitatively. However, in the presence of excess amount of Fe2(CO)9 in refluxing acetonitrile, complex 5 was converted into 2-4. On the other hand, the reaction of N-(6-methyl-2-pyridylmethylidene)-2-thiolethylamine (6) with Fe2(CO)9 in refluxing acetonitrile produced 2, μ-[N-(6-methyl-2-pyridylmethyl)-η1 (Npy);η11(N); η11(S)-2-thiolatoethylamido]pentacarbonyldiiron (7), and μ-[N-(6-methyl-2-pyridylmethylidene)-η2(C,N);η11(S)-2- thiolethylamino]hexacarbonyldiiron (8). Reactions of both complex 7 and 8 with NOBF4 gave μ-[(6-methyl-2-pyridylmethyl)-η1(Npy);η11(N);η11(S)-2-thiolatoethylamido](acetonitrile)tricarbonylnitrosyldiiron (9). These reaction products were well characterized spectrally. The molecular structures of complexes 3, 7-9 have been determined by means of X-ray diffraction. Intramolecular 1,5-hydrogen shift from the thiol to the methine carbon was observed in complexes 3, 7, and 9.  相似文献   

17.
Uracil-annulated heteroazulenes, 6-substituted 7,9-dimethylcyclohepta[b]pyrimido[5,4-d]pyrrole-8(7H),10(9H)-dionylium tetrafluoroborates 7a,b·BF4, which are the isoelectronic compounds of 5-dezazaflavin, were synthesized. X-Ray crystal analysis and MO calculations were carried out to clarify the structural characteristics of 7a,b·BF4. The stability of cations 7a,b is expressed by the pKR+ values which were determined spectrophotometrically to be 10.9 and 11.2, respectively. The electrochemical reduction of 7a,b exhibited high reduction potentials at −0.84 and −0.87 (V vs Ag/AgNO3) upon cyclic voltammetry (CV). A good linear correlation between the pKR+ values and reduction potentials (E1red) of 7a,b·BF4 and reference compounds 4·BF4 and 5·BF4 was obtained. In a search of the reactivity, reactions of 7a,b·BF4 with some nucleophiles, hydride and diethylamine, were carried out to clarify that the introduction of nucleophiles to give regio-isomers is dependent on the nucleophile. The photo-induced oxidation reactions of 7a,b·BF4 toward some alcohols under aerobic conditions were carried out to give the corresponding carbonyl compounds in more than 100% yield [based on compounds 7a,b·BF4], suggesting the oxidizing function of 7a,b·BF4 toward alcohols in the autorecycling process.  相似文献   

18.
MgMe2 (1) was found to react with 1,4-diazabicyclo[2.2.2]octane (dabco) in tetrahydrofuran (thf) yielding a binuclear complex [{MgMe2(thf)}2(μ-dabco)] (2). Furthermore, from reactions of MgMeBr with diglyme (diethylene glycol dimethyl ether), NEt3, and tmeda (N,N,N′,N′-tetramethylethylenediamine) in etheral solvents compounds MgMeBr(L), (L = diglyme (5); NEt3 (6); tmeda (7)) were obtained as highly air- and moisture-sensitive white powders. From a thf solution of 7 crystals of [MgMeBr(thf)(tmeda)] (8) were obtained. Reactions of MgMeBr with pmdta (N,N,N′,N″,N″-pentamethyldiethylenetriamine) in thf resulted in formation of [MgMeBr(pmdta)] (9) in nearly quantitative yield. On the other hand, the same reaction in diethyl ether gave MgMeBr(pmdta) · MgBr2(pmdta) (10) and [{MgMe2(pmdta)}7{MgMeBr(pmdta)}] (11) in 24% and 2% yield, respectively, as well as [MgMe2(pmdta)] (12) as colorless needle-like crystals in about 26% yield. The synthesized methylmagnesium compounds were characterized by microanalysis and 1H and 13C NMR spectroscopy. The coordination-induced shifts of the 1H and 13C nuclei of the ligands are small; the largest ones were found in the tmeda and pmdta complexes. Single-crystal X-ray diffraction analyses revealed in 2 a tetrahedral environment of the Mg atoms with a bridging dabco ligand and in 8 a trigonal-bipyramidal coordination of the Mg atom. The single-crystal X-ray diffraction analyses of [MgMe2(pmdta)] (12) and [MgBr2(pmdta)] (13) showed them to be monomeric with five-coordinate Mg atoms. The square-pyramidal coordination polyhedra are built up of three N and two C atoms in 12 and three N and two Br atoms in 13. The apical positions are occupied by methyl and bromo ligands, respectively. Temperature-dependent 1H NMR spectroscopic measurements (from 27 to −80 °C) of methylmagnesium bromide complexes MgMeBr(L) (L = thf (4); diglyme (5); NEt3 (6); tmeda (7)) in thf-d8 solutions indicated that the deeper the temperature the more the Schlenk equilibria are shifted to the dimethylmagnesium/dibromomagnesium species. Furthermore, at −80 °C the dimethylmagnesium compounds are predominant in the solutions of Grignard compounds 4-6 whereas in the case of the tmeda complex7 the equilibrium constant was roughly estimated to be 0.25. In contrast, [MgMeBr(pmdta)] (9) in thf-d8 revealed no dismutation into [MgMe2(pmdta)] (12) and [MgBr2(pmdta)] (13) even up to −100 °C. In accordance with this unexpected behavior, 1:1 mixtures of 12 and 13 were found to react in thf at room temperature yielding quantitatively the corresponding Grignard compound 9. Moreover, the structures of [MgMeBr(pmdta)] (9c), [MgMe2(pmdta)] (12c), and [MgBr2(pmdta)] (13c) were calculated on the DFT level of theory. The calculated structures 12c and 13c are in a good agreement with the experimentally observed structures 12 and 13. The equilibrium constant of the Schlenk equilibrium (2 9c ? 12c + 13c) was calculated to be Kgas = 2.0 × 10−3 (298 K) in the gas phase. Considering the solvent effects of both thf and diethyl ether using a polarized continuum model (PCM) the corresponding equilibrium constants were calculated to be Kthf = 1.2 × 10−3 and Kether = 3.2 × 10−3 (298 K), respectively.  相似文献   

19.
The P63 (a=2ap, b=2bp, c=cp) crystal structure reported for BaAl2O4 at room temperature has been carefully re-investigated by a combined transmission electron microscopy and neutron powder diffraction study. It is shown that the poor fit of this P63 (a=2ap, b=2bp, c=cp) structure model for BaAl2O4 to neutron powder diffraction data is primarily due to the failure to take into account coherent scattering between different domains related by enantiomorphic twinning of the P6322 parent sub-structure. Fast Fourier transformation of [0 0 1] lattice images from small localized real space regions (∼10 nm in diameter) are used to show that the P63 (a=2ap, b=2bp, c=cp) crystal structure reported for BaAl2O4 is not correct on the local scale. The correct local symmetry of the very small nano-domains is most likely orthorhombic or monoclinic.  相似文献   

20.
tert-Butyldimethylsililoxy-2-aza-1,3-butadienes react with 2H-azirine 3 leading to Diels-Alder cycloadducts in moderate yields. The reactions are endo- and regioselective with the azirine being added by its less hindered face. There is only one product in the case of 1b, 4b. There are two isomers (4 and 5) from 1a, 1c and 1d. A different result was obtained with the diene 1e. Diene 1e formed products 4e and 8. Some of compounds 4 and 5 have been hydrolysed leading to functionalised aziridines 7. Compound 8 gave aziridine 9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号