首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The La2CuO4 crystal nanofibers were prepared by using single-walled carbon nanotubes as templates under mild hydrothermal conditions. The steam reforming of methanol (SRM) to CO2 and H2 over such nanofiber catalysts was studied. At the low temperature of 150 °C and steam/methanol=1.3, methanol was completely (100%, 13.8 g/h g catalyst) converted to hydrogen and CO2 without the generation of CO. Within the 60 h catalyst lifespan test, methanol conversion was maintained at 98.6% (13.6 g/h g catalyst) and with 100% CO2 selectivity. In the meantime, for distinguishing the advantage of nanoscale catalyst, the La2CuO4 bulk powder was prepared and tested for the SRM reaction for comparison. Compared with the La2CuO4 nanofiber, the bulk powder La2CuO4 showed worse catalytic activity for the SRM reaction. The 100% conversion of methanol was achieved at the temperature of 400 °C, with the products being H2 and CO2 together with CO. The catalytic activity in terms of methanol conversion dropped to 88.7% (12.2 g/h g catalyst) in 60 h. The reduction temperature for nanofiber La2CuO4 was much lower than that for the La2CuO4 bulk powder. The nanofibers were of higher specific surface area (105.0 m2/g), metal copper area and copper dispersion. The in situ FTIR and EPR experiments were employed to study the catalysts and catalytic process. In the nanofiber catalyst, there were oxygen vacancies. H2-reduction resulted in the generation of trapped electrons [e] on the vacancy sites. Over the nanofiber catalyst, the intermediate H2CO/HCO was stable and was reformed to CO2 and H2 by steam rather than being decomposed directly to CO and H2. Over the bulk counterpart, apart from the direct decomposition of H2CO/HCO to CO and H2, the intermediate H2COO might go through two decomposition ways: H2COO=CO+H2O and H2COO=CO2+H2.  相似文献   

2.
KAl(SO4)2·12H2O was found to catalyze efficiently a one-pot three-component cyclocondensation of isatoic anhydride and primary amines or ammonia sources such as (NH4)2CO3, NH4OAc and NH4Cl with aromatic aldehydes under mild conditions to afford the corresponding mono- and disubstituted 2,3-dihydroquinazolin-4(1H)-ones in good yields.  相似文献   

3.
A systematic investigation has been carried out for the allylation of carbonyl compounds under SnCl2·2H2O-mediated Barbier-type conditions, using CuI and Pd(OAc)2 as catalysts. Ketones, which are not reactive under the influence of CuI, however, could be activated by using Pd(OAc)2 as a catalyst.  相似文献   

4.
Silica gel supported TaBr5 (5-10 mol %) is a new solid-support catalyst that can be used under solvent-free conditions for the facile and efficient isomerization of 2′-aminochalcones to the corresponding 2-aryl-2,3-dihydroquinolin-4(1H)-ones. The catalyst is easily prepared, stable and employed under environmentally friendly conditions.  相似文献   

5.
Hydrothermal synthesis in the M/Mo/O (M=Co,Ni) system was investigated. Novel transition metal tetramolybdate dihydrates MMo4O13·2H2O (M=Co,Ni), having an interesting pillared layer structure, were found. The molybdates crystallize in the triclinic system with space group P−1, Z=1 with unit cell parameters of a=5.525(3) Å, b=7.058(4) Å, c=7.551(5) Å, α=90.019(10)°, β=105.230(10)°, γ=90.286(10)° for CoMo4O13·2H2O, and a=5.508(2) Å, b=7.017(3) Å, c=7.533(3) Å, α=90.152(6)°, β=105.216(6)°, γ=90.161(6)° for NiMo4O13·2H2O The structure is composed of two-dimensional molybdenum-oxide (2D Mo-O) sheets pillared with CoO6 octahedra. The 2D Mo-O sheet is made up of infinite straight ribbons built up by corner-sharing of four molybdenum octahedra (two MoO6 and two MoO5OH2) sharing edges. These infinite ribbons are similar to the straight ones in triclinic-K2Mo4O13 having 1D chain structure, but are linked one after another by corner-sharing to form a 2D sheet structure, like the twisted ribbons in BaMo4O13·2H2O (or in orthorhombic-K2Mo4O13) are.  相似文献   

6.
Hydroboration reactions of 1-octene and 1-hexyne with H2BBr·SMe2 in CH2Cl2 were studied as a function of concentration and temperature, using 11B NMR spectroscopy. The reactions exhibited saturation kinetics. The rate of dissociation of dimethyl sulfide from boron at 25 °C was found to be (7.36 ± 0.59 and 7.32 ± 0.90) × 10−3 s−1 for 1-octene and 1-hexyne, respectively. The second order rate constants, k2, for hydroboration worked out to be 7.00 ± 0.81 M s−1 and 7.03 ± 0.70 M s−1, while the overall composite second order rate constants, k K, were (3.30 ± 0.43 and 3.10 ± 0.37) × 10−2 M s−1, respectively at 25 °C. The entropy and enthalpy values were found to be large and positive for k1, whilst for k2 these were large and negative, with small values for enthalpies. This is indicative of a limiting dissociative (D) for the dissociation of Me2S and associative mechanism (A) for the hydroboration process. The overall activation parameters, ΔH and ΔS, were found to be 98 ± 2 kJ mol−1 and +56 ± 7 J K−1 mol−1 for 1-octene whilst, in the case of 1-hexyne these were found out to be 117 ± 7 kJ mol−1 and +119 ± 24 J K−1 mol−1, respectively. When comparing the kinetic data between H2BBr·SMe2 and HBBr2·SMe2, the results showed that the rate of dissociation of Me2S from H2BBr·SMe2 is on average 34 times faster than it is in the case of HBBr2·SMe2. Similarly, the rate of hydroboration with H2BBr·SMe2 was found to be on average 11 times faster than it is with HBBr2·SMe2. It is also clear that by replacing a hydrogen substituent with a bromine atom in the case of H2BBr·SMe2 the mechanism for the overall process changes from limiting dissociative (D) to interchange associative (Ia).  相似文献   

7.
Silica-supported boron trifluoride (BF3·SiO2) is an efficient, readily available, and reusable catalyst for the synthesis of 14-aryl or alkyl-14H-dibenzo[a,j]xanthenes by condensation of 2-naphthol and aldehydes. This reaction under heating or sonication conditions is very simple, affording good to excellent yields of products.  相似文献   

8.
Fe2(SO4)3·xH2O can be used as an efficient and reusable catalyst for the synthesis of pyrano- and furanotetrahydroquinolines via one-pot three-component Povarov reaction involving aromatic aldehydes, aromatic amines, and cyclic enol ethers. The catalyst is recyclable, economically viable, and environmentally benign. This protocol provides good yields and diastereoselectivity as well as applicability on a wide range of substrates.  相似文献   

9.
The reactions of [RuH(CO)Cl(PPh3)3] with N,N-bis(salicylidine)-hydrazine (H2bsh) and N,N-bis(salicylidine)-p-phenylene diammine (H2bsp) in presence of KOH in methanol led in the formation of neutral mononuclear complexes with the formulations [RuH(CO)(PPh3)2(L)] (LHbsh or Hbsp). These present the first examples where the ligands H2bsh or H2bsp provide only two of its available donor sites for interaction with the metal centre. The complexes have been characterized by elemental analyses, FAB-MS, IR, 1H, 13C, 31P NMR and electronic spectral studies. Molecular structure of the representative complex [RuH(CO)(PPh3)2(Hbsh)] have been determined by single crystal X-ray analysis.  相似文献   

10.
The compounds M[PO2(OH)2]2·2H2O (M=Mg, Mn, Fe, Co, Ni, Zn, Cd) were prepared from super-saturated aqueous solutions at room temperature. Single-crystal X-ray structure investigations of members with M=Ni, Zn, Cd were performed at 295 and 120 K. The space-group symmetry is P21/n, Z=2. The unit-cell parameters are at 295/120 K for M=Ni: a=7.240(2)/7.202(2), b=9.794(2)/9.799(2), c=5.313(1)/5.285(1) Å, β=94.81(1)/94.38(1)°, V=375.4/371.9 Å3; M=Zn: a=7.263(2)/7.221(2), b=9.893(2)/9.899(3), c=5.328(1)/5.296(2) Å, β=94.79(1)/94.31(2)°, V=381.5/377.5 Å3; M=Cd: a=7.356(2)/7.319(2), b=10.416(2)/10.423(3), c=5.407(1)/5.371(2) Å, β=93.85(1)/93.30(2)°, V=413.4/409.1 Å3. Layers of corner-shared MO6 octahedra and phosphate tetrahedra are linked by three of the four crystallographically different hydrogen bonds. The fourth hydrogen bond (located within the layer) is worth mentioning because of the short Oh?O bond distance of 2.57-2.61 Å at room temperature (2.56-2.57 Å at 120 K); only for M=Mg it is increased to 2.65 Å. Any marked temperature-dependent variation of the unit-cell dimension is observed only vertical to the layers. The analysis of the infrared (IR) spectroscopy data evidences that the internal PO4 vibrations are insensitive to the size and the electronic configuration of the M2+ ions. The slight strengthening of the intra-molecular P-O bonds in the Mg salt is caused by the more ionic character of the Mg-O bonds. All IR spectra exhibit the characteristic “ABC trio” for acidic salts: 2900-3180 cm−1 (A band), 2000-2450 cm−1 (B band) and 1550-1750 cm−1 (C band). Both the frequency and the intensity of the A band provide an evidence that the PO2(OH)2 groups in M[PO2(OH)2]2·2H2O compounds form weaker hydrogen bonds as compared with other acidic salts with comparable O?O bond distances of about 2.60 Å. The observed shift of the O-H stretching vibrations of the water molecule in the order M=Mg>Mn≈Fe≈Co>Ni>Zn≈Cd has been discussed with respect to the influence of both the character and the strength of M↔H2O interactions.  相似文献   

11.
A series of spinel-type CoxNi1−xFe2O4 (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0) magnetic nanomaterials were solvothermally synthesized as enzyme mimics for the eletroctrocatalytic oxidation of H2O2. X-ray diffraction and scanning electron microscope were employed to characterize the composition, structure and morphology of the material. The electrochemical properties of spinel-type CoxNi1−xFe2O4 with different (Co/Ni) molar ratio toward H2O2 oxidation were investigated, and the results demonstrated that Co0.5Ni0.5Fe2O4 modified carbon paste electrode (Co0.5Ni0.5Fe2O4/CPE) possessed the best electrocatalytic activity for H2O2 oxidation. Under optimum conditions, the calibration curve for H2O2 determination on Co0.5Ni0.5Fe2O4/CPE was linear in a wide range of 1.0 × 10−8–1.0 × 10−3 M with low detection limit of 3.0 × 10−9 M (S/N = 3). The proposed Co0.5Ni0.5Fe2O4/CPE was also applied to the determination of H2O2 in commercial toothpastes with satisfactory results, indicating that CoxNi1−xFe2O4 is a promising hydrogen peroxidase mimics for the detection of H2O2.  相似文献   

12.
Facile N-tert-butoxycarbonylation of amines is described by the treatment of various primary, secondary, benzylic and aryl amines with di-tert-butyl dicarbonate in the presence of catalytic amounts of La(NO3)3·6H2O under solvent-free conditions at room temperature to afford N-tert-butylcarbamates in excellent yields.  相似文献   

13.
The thermal decomposition mechanisms and the intermediate morphology of MgCl2·6H2O and MgCl2·H2O were studied using integrated thermal analysis, X-ray diffraction, scanning electron microscope and chemical analysis. The results showed that there were six steps in the thermal decomposition of MgCl2·6H2O: producing MgCl2·4H2O at 69 °C, MgCl2·2H2O at 129 °C, MgCl2·nH2O (1 ≤ n ≤ 2) and MgOHCl at 167 °C, the conversion of MgCl2·nH2O (1 ≤ n ≤ 2) to Mg(OH)Cl·0.3H2O by simultaneous dehydration and hydrolysis at 203 °C, the dehydration of Mg(OH)Cl·0.3H2O to MgOHCl at 235 °C, and finally the direct conversion of MgOHCl to the cylindrical particles of MgO at 415 °C. To restrain the sample hydrolysis and to obtain MgCl2·H2O, MgCl2·6H2O was first calcined in HCl atmosphere until 203 °C when MgCl2·H2O was obtained; HCl gas was then turned off and the calcination process continued, producing Mg3Cl2(OH)4·2H2O calcined at 203 °C, Mg3(OH)4Cl2 at 220 °C and MgO at 360 °C. The temperature of producing MgO from calcination of MgCl2·H2O was lower (360 °C) than that from MgCl2·6H2O (415 °C) because of its more reactive intermediate products: the irregular shape and tiny needle-like Mg3Cl2(OH)4·2H2O particles and the uneven surface porous Mg3(OH)4Cl2 particles. The MgO particles obtained at 360 °C had a flake structure.  相似文献   

14.
An efficient TaBr5 (5-10 mol %)-catalyzed Biginelli reaction under solvent-free conditions for one-pot syntheses of 3,4-dihydropyrimidin-2-(1H)-ones (DHPMs) and their thione analogs is reported. The catalyst is stable at room temperature and employed under mild and environmentally friendly conditions.  相似文献   

15.
Syntheses, crystal structures and thermal behavior of two polymorphic forms of Ce(SO4)2·4H2O are reported. The first modification, α-Ce(SO4)2·4H2O (I), crystallizes in the orthorhombic space group Fddd, with a=5.6587(1), b=12.0469(2), c=26.7201(3) Å and Z=8. The second modification, β-Ce(SO4)2·4H2O (II), crystallizes in the orthorhombic space group Pnma, with a=14.6019(2), b=11.0546(2), c=5.6340(1) Å and Z=4. In both structures, the cerium atoms have eight ligands: four water molecules and four sulfate groups. The mutual position of the ligands differs in (I) and (II), resulting in geometrical isomerism. Both these structures are built up by layers of Ce(H2O)4(SO4)2 held together by a hydrogen bonding network. The dehydration of Ce(SO4)2·4H2O is a two step (I) and one step (II) process, respectively, forming Ce(SO4)2 in both cases. During the decomposition of the anhydrous form, Ce(SO4)2, into the final product CeO2, intermediate xCeO2·yCe(SO4)2 species are formed.  相似文献   

16.
An efficient and economical protocol for the synthesis of 5-substituted 1H-tetrazoles from various nitriles and sodium azide is described using magnetically recoverable and reusable CuFe2O4 nanoparticles. A wide variety of aryl nitriles underwent [2+3] cycloaddition under mild reaction conditions to afford tetrazoles in good to excellent yields. The catalyst was magnetically separated and reused five times without significant loss of catalytic activity.  相似文献   

17.
Lei Shi  Feng Pan 《Tetrahedron》2008,64(11):2572-2575
Fully acetylated saccharides are inexpensive and very useful starting materials for the synthesis of many naturally occurring glycosides, oligosaccharides, and glycoconjugates. Ferric sulfate hydrate (Fe2(SO4)3·xH2O) was found to be a valuable Lewis acid promoter in the per-O-acetylation reaction of saccharides with acetic anhydride in 100% of conversion rate and 88-99% yields. Interestingly, the procedure is perfectly compatible with the presence of a variety of acid-labile protecting groups, such as isopropylidene, benzylidene, trityl, and TBDMS groups. The reactions were simply performed by stirring the mixture of a sugar with a slight excessive acetic anhydride in the presence of 2.0 mol % of Fe2(SO4)3·xH2O at rt and the pure products were obtained by a simple dilution of the reaction mixture with dichloromethane and washings with aqueous Na2CO3.  相似文献   

18.
The two new compounds, Sr4Cu3(AsO4)2(AsO3OH)4·3H2O (1) and Ba2Cu4(AsO4)2(AsO3OH)3(2), were synthesized under hydrothermal conditions. They represent previously unknown structure types and are the first compounds synthesized in the systems SrO/BaO-CuO-As2O5-H2O. Their crystal structures were determined by single-crystal X-ray diffraction [space group C2/c, a=18.536(4) Å, b=5.179(1) Å, c=24.898(5) Å, β=93.67(3)°, V=2344.0(8) Å3, Z=4 for 1; space group P42/n, a=7.775(1) Å, c=13.698(3) Å, V=828.1(2) Å3, Z=2 for 2]. The crystal structure of 1 is related to a group of compounds formed by Cu2+-(XO4)3− layers (X=P5+, As5+) linked by M cations (M=alkali, alkaline earth, Pb2+, or Ag+) and partly by hydrogen bonds. In 1, worth mentioning is the very short hydrogen bond length, D···A=2.477(3) Å. It is one of the examples of extremely short hydrogen bonds, where the donor and acceptor are crystallographically different. Compound 2 represents a layered structure consisting of Cu2O8 centrosymmetric dimers crosslinked by As1φ4 tetrahedra, where φ is O or OH, which are interconnected by Ba, As2 and hydrogen bonds to form a three-dimensional network. The layers are formed by Cu2O8 centrosymmetric dimers of CuO5 edge-sharing polyhedra, crosslinked by As1O4 tetrahedra. Vibrational spectra (FTIR and Raman) of both compounds are described. The spectroscopic manifestation of the very short hydrogen bond in 1, and ABC-like spectra in 2 were discussed.  相似文献   

19.
An efficient and simple method for the synthesis of 2,2-disubstituted-2H-chromenes by one-step cyclocondensation of a phenol with a variety of 1,1-disubstituted propargyl alcohols using BF3·Et2O as the catalyst is described.  相似文献   

20.
Peng Wu 《Acta Physico》2008,24(3):369-374
It was found that Si-MCM-41 mesoporous molecular sieves as a support of noble metal Pt could be used for the selective catalytic reduction of NO by hydrogen (H2-SCR) under lean-burn conditions. Pt/Si-MCM-41, together with Pt/Si-ZSM-5 and Pt/SiO2, was characterized by X-ray diffraction analysis (XRD), nitrogen adsorption/desorption, hydrogen adsorption, and transmission electron microscopy (TEM). The results indicated that Pt/Si-MCM-41 had the best H2-SCR activity in comparison with Pt/Si-ZSM-5 and Pt/SiO2 catalysts and that the maximum conversion of NO was up to 60.1% at 100 °C and a gas hourly space velocity (GHSV) of 80000 h-1 under lean-burn conditions. Characterization showed that the large surface area and pore volume of MCM-41 favored the dispersion of Pt. The maximum NO conversion of Pt/Si-MCM-41 catalyst decreased obviously to 15% at 120 °C when the pore structure of Si-MCM-41 support was destroyed. The reaction mechanism over Pt/Si-MCM-41 was investigated using in situ diffuse reflectance infrared spectroscopy (DRIFTS), which revealed that the main reaction intermediates should be nitrate species during NO reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号