首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A diode-end-pumped simultaneously Q-switched and mode-locked intracavity frequency doubled Nd:GdVO4/LBO red laser with an acousto-optic Q-switch was realized. The maximum red laser output power of 250 mW was obtained at the incident pump power of 8.3 W and the repetition rate of 10 kHz. At 5 kHz, the maximum mode-locking modulation depth of about 80% was achieved with the Q-switched pulse width of 440 ns. The red mode-locked pulse inside the Q-switched pulse had a repetition rate of 115 MHz, its average pulse width was estimated to be about 350 ps.  相似文献   

2.
By using a-cut Nd:Lu0.15Y0.85VO4 mixed crystal as laser gain medium, a diode-pumped passively Q-switched and mode-locked (QML) laser with a GaAs saturable absorber in a Z-type folded cavity is demonstrated for the first time. The Q-switched mode-locked laser pulses with about 90% modulation depth are obtained as long as the pump power reached the oscillation threshold. The repetition rate of the passively Q-switched pulse envelope ranges from 50 to 186 kHz as the pump power increases from 0.915 to 6.520 W. Under an incident pump power of 6.52 W, the QML pulses with the largest average output power of 694 mW, the shortest pulse width of 200 ns and the highest pulse energy of 3.73 μJ are obtained. The mode-locked pulse width inside the Q-switched envelope is estimated to be about 275 ps. The experimental results show that Nd:Lu0.15Y0.85VO4 is a promising mixed crystal for QML laser.  相似文献   

3.
We report for the first time pulsed laser operation of the Yb-doped Li6Y(BO3)3 (Yb-LYB) crystal in the nanosecond as well as in the femtosecond regime. Pulse durations as short as 355 fs have been obtained in passively mode-locked operation and pulse energies up to 140 μJ in Q-switched operation. PACS 42.70Hj; 42.55Xi; 42.60Gd; 42.65Re  相似文献   

4.
We report a 880 nm LD pumped passive Q-switched and mode-locked Nd:YVO4 laser using a single-walled carbon nanotube saturable absorber (SWCNT-SA). At the pump power of 7.78 W, the average out-put power of 330 mW of Q-switched and mode-locked laser with optical conversion efficiency of 4.2% was generated. The repetition rate and pulse width of the Q-switched envelope were 33 kHz and 5.6 μs, respectively. The repetition rate and pulse energy of the mode-locked pulse within the Q-switched envelope were 80 MHz and 4.1 nJ, respectively.  相似文献   

5.
We report on a passively Q-switched and mode-locked Nd:YVO4 laser using a novel low-cost wall-paper graphene oxide absorber. Sandwich structured wallpaper graphene oxide absorber was constructed by a high transmission mirror, a piece of wallpaper graphene oxide absorber and a reflective mirror. The average output power of 310 mW of passively Q-switched and mode-locked laser was successfully achieved. The repetition rate and pulse width of the Q-switched envelope were 213 kHz and 770 ns, respectively. The repetition rate of passively mode-locked pulse within the Q-switched envelope was 81.3 MHz with the pulse energy of 3.8 nJ.  相似文献   

6.
A diode-pumped passively Q-switched mode-locked (QML) intracavity frequency-doubled Nd:GdVO4/KTP green laser with a semiconductor saturable absorber is presented. Nearly 100% modulation depth for the mode-locked green pulses can be achieved at any pump power over 1.92 W. The width of the mode-locked green pulse was estimated to be about 150 ps. The mode-locked pulse interval within the Q-switched envelope of 320 ns and the repetition rate of 97.5 kHz were obtained, at an incident pump power of 4.4 W. The repetition rate of the mode-locked green pulses inside the Q-switched envelope was 140 MHz.  相似文献   

7.
A diode-pumped passively Q-switched mode-locked (QML) intracavity frequency doubled c-cut Nd:GdVO4/KTP green laser with a LT-GaAs saturable absorber is presented. More than 90% modulation depth for the mode-locked green pulses has been achieved. Using the hyperbolic secant function methods, a developed rate equation model for Q-switched and mode-locked lasers considering the Gaussian spatial distribution of the intracavity photon intensity, the influences of continuous pump rate, the upper state lifetime of the active medium, and the excited-state lifetime of the saturable absorber, was proposed. With this developed model, the theoretical results are in good agreement with the experimental results and the width of the mode-locked green pulse was estimated to be about 380 ps.  相似文献   

8.
By using double-mixed crystal Nd:Lu0.15Y0.85VO4 as laser medium, a diode-pumped doubly Q-switched and mode-locked (QML) Nd:Lu0.15Y0.85VO4 laser with acousto-optic (AO) modulator and central semiconductor saturable absorption mirror (SESAM) is realized for the first time. The Q-switched envelope modulation depth is nearly 100%.The average output power and the pulse width of the Q-switched envelope etc. for different AO modulator repetition rates have been measured. The experimental result show that Nd:Lu0.15Y0.85VO4 crystal is an excellent laser medium for doubly QML lasers.  相似文献   

9.
A passively Q-switched and mode-locked Nd:LuVO4 laser with V:YAG at 1.34 μm was successfully demonstrated. Comparisons between c-cut and a-cut Nd:LuVO4 lasers were experimentally made. The maximum average output power of 170 mW, the highest Q-switched pulse energy of 4.5 μJ were obtained in c-cut Nd:LuVO4 laser. The duration of mode-locked pulse was estimated to be less than 540 ps with repetition rate of 110 MHz.  相似文献   

10.
The characteristics of Q-switched and mode-locked operation in c-cut Nd:LuVO4 laser has been first time investigated by using an acousto-optic modulator. In our study, higher pulse energy and shorter width of Q-switched envelope can be generated using output coupler with R = 80% as compared to those of R = 60%. However, deeper modulation depth and shorter pulsewidth of mode-locked pulses can be generated by using R = 60% instead of R = 80%. In our laser, the pulsewidth of QML pulses are measured by the FROG method and pulsewidth of about 212 ps was produced in the c-cut Nd:LuVO4 laser.  相似文献   

11.
We present the performance of diode end-pumped Nd:YVO4 laser in Q-switched and Q-switched mode-locking oscillation using a single-walled carbon nanotube based saturable absorber, which was fabricated using similar vertical evaporation technique. The average output power, repetition rate and pulse width of the Q-switched laser output were studied with different output couplers. The maximum average output power was 130 mW. For Q-switched mode-locking operation, the repetition rate of the mode-locked pulses concentrated in the Q-switched envelope was 58 MHz. The repetition rate of the Q-switched envelope maintained at 18 kHz, while the pulse width decreased along with the increasing of pump power. The maximum average output power was 53 mW.  相似文献   

12.
A diode-pumped self-Q-switched and mode-locked intracavity frequency doubled Nd:GdVO4/KTP green laser is presented. The self mode-locking is self-starting and stable. About 100% modulation depth for the self-mode-locked green pulses has been achieved. We propose a developed rate equation model for self-Q-switched and mode-locked lasers, using the hyperbolic secant function methods and the theory of Kerr-lens mode-locking. This will consider the cascading of second-order nonlinearities of KTP crystal, the third-order nonlinearity of the laser medium, influences of the continuous pump rate, and the stimulated radiation lifetime of the active medium. With the model developed, theoretical calculations are shown to be in good agreement with experimental results. The width of the mode-locked green pulse is estimated to be about 120 ps. PACS 42.60.Fc; 42.60.Gd; 42.65.Hw  相似文献   

13.
We have characterized non-critical phase-matching (NCPM) for both Type I and Type II second harmonic generation (SHG) in y-cut GdxY1-xCOB using a nanosecond optical parametric oscillator (OPO). The variation of the NCPM wavelength with temperature was investigated for different values of the compositional parameter x. Efficient SHG of 1064 nm was achieved by choosing the suitable compositional parameter x=0.28 and by tuning the temperature of the crystal to 52 °C. Using a 25-mm-long Gd0.28Y0.72COB crystal, conversion efficiencies of 41 and 43% were obtained respectively from a mode-locked Nd:YAG and a Q-switched Nd:YAG laser. PACS 42.25.Lc; 42.65.Ky; 42.70.Mp; 42.79.Nv  相似文献   

14.
A diode-pumped dual-loss-modulated Q-switched and mode-locked (QML) Nd:Lu0.15Y0.85VO4 laser with acousto-optic (AO) modulator and Cr4+:YAG saturable absorber is presented. The stable QML laser pulse with high peak power and complete modulation depth has been obtained. The QML laser characteristics such as the pulse width, single-pulse energy etc. have been measured for different small-signal transmissions (T 0) of Cr4+:YAG, different reflectivity (R) of output coupler and modulation frequencies of the AO modulator (f p ). The results show that the pulse energy increases with decreasing f p and increasing T 0, while the pulse width decreases with decreasing f p and increasing T 0. At f p = 10 kHz, R = 90%, and T 0 = 91%, the highest pulse energy and peak power of mode-locked pulses is obtained.  相似文献   

15.
We have experimentally demonstrated a diode-pumped passively mode-locked Nd:CaNb2O6 laser for the first time to our best knowledge. With a semiconductor saturable absorber mirror (SESAM) as a passive mode locker, the laser generated stable mode-locked pulses with pulse duration of 17.3 ps and repetition rate of 88.4 MHz. With a singe-emitter laser diode pumping, the maximum average output power of the mode-locked laser was 0.843 W, with a slope efficiency of 23%. The experimental results show the Nd:CaNb2O6 crystal is a promising laser gain medium for picosecond pulse generation.  相似文献   

16.
By using a composite semiconductor absorber and an output coupler, we demonstrated a Q-switched and mode-locked diode-pumped microchip Nd:YVO4 laser. With a 350-μm-thick crystal, the width of the Q-switched envelope was as short as 12 ns; the repetition rate of the mode-locked pulses inside the Q-switched pulse was more than 10 GHz. The average output power was 335 mW at a maximum pump power of 1.6 W. Q-switched envelope widths of 21 and 31 ns were also achieved with crystals 0.7 and 1.0 mm thick, respectively.  相似文献   

17.
The power scaling capacity of a diode end-pumped Yb:KLu(WO4)2 laser, operating in the continuous-wave (cw) and passively Q-switched regimes, has been investigated. A cw output power of 11.5 W was achieved with an optical-to-optical efficiency of 41% with respect to the incident pump power, while the slope efficiency amounts to 60%. The passively Q-switchedoperation yielded an average output power of 4.3 W at the fundamental wavelength of 1031.7 nm, and 1.15 W of Raman radiation at 1139.3 nm. The total slope efficiency for Q-switched operation was 40%. The highest pulse energy, duration, and peak power were 170 μJ, 2.2 ns, and 77.3 kW for the fundamental radiation, and 51 μJ, 2.3 ns, and 22.2 kW for the Raman radiation. PACS 42.55.Rz; 42.55.Xi; 42.55.Ye  相似文献   

18.
We experimentally demonstrated a high-efficiency passively Q-switched Yb:CaYAlO4 (Yb:CYA) laser based on a semiconductor-saturable absorber mirror (SESAM), and the output characteristics of the laser including the average output power, repetition frequency, pulse duration, pulse energy and pulse peak power were investigated by adopting output mirrors with different transmittances. When the transmittance of the output mirror was 5% and the pump power was set at about 7.76 W, a maximum average output power of as high as 2.480 W was achieved with a slope efficiency and light-to-light efficiency of the Q-switched Yb:CYA laser of up to 37.1% and 31.2%, respectively.  相似文献   

19.
This paper reports on a passively mode-locked and Q-switched Nd:YVO4 laser generating picosecond pulses with an average output power exceeding 7 W. In a first step Q-switch mode-locking was obtained by self Q-switching of a mode-locked oscillator with appropriate cavity design, pump power and output coupling. In a second system the Q-switching was actively controlled and stabilized by modulating the resonator internal losses with an acousto-optic modulator. In the Q-switch mode-locking operation the laser provided 12.8 ps long mode-locked pulses with a repetition rate of 80 MHz. The repetition rate of the Q-switch envelope was 185 kHz. The maximum pulse energy of a single ps pulse was 0.55 μJ which is 5.5 times the pulse energy measured for cw mode locking. The total energy of the pulses within the Q-switch envelope was 42 μJ. PACS  42.55.Xi; 42.60.Fc; 42.60.Gd  相似文献   

20.
A diode-pumped passively Q-switched Nd:Lu0.15Y0.85VO4 laser with a GaAs output coupler is demonstrated. By using a mixed crystal Nd:Lu0.15Y0.85VO4 as laser medium, the passively Q-switched laser can generate shorter pulse width with higher peak power in comparison with the passively Q-switched Nd:LuVO4 or Nd:YVO4 lasers under the same laser cavity. At the incident pump power 11.9 W, the minimum pulse width of 3.23 ns and the maximum peak power 1.67 kW can be obtained. The average output power and the pulse repetition rate of the laser are also measured. The experimental results show that the mixed crystal is a promising laser medium for shorter Q-switched pulse with higher peak power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号