首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study we report the stability constants and the speciation of the ternary vanadium(III) complexes with 2,2??-bipyridine (Bipy) and the amino acids histidine (HHis), cysteine (H2Cys), aspartic acid (H2Asp) and glutamic acid (H2Glu) by means of potentiometric titrations employing 3.0 mol?dm?3 KCl as the ionic medium at 25?°C. The potentiometric data were analyzed taking into account the hydrolysis of the vanadium(III) cation and the respective stability constants of the binary complexes and the acid?Cbase reactions of the ligands, which were kept fixed during the analysis. The complexes detected in the different systems are: in the vanadium(III)?CBipy?CHHis system, [V(HBipy)(HHis)]4+ and [V(HBipy)(H2His)]5+; in the vanadium(III)?CBipy?CH2Cys system, [V2O(Bipy)(Cys)]2+; in the vanadium(III)?CBipy?CH2Asp system, [V(Bipy) (Asp)]+, [V2O(Bipy)(Asp)]2+, and V2O(Bipy)2(Asp)2; and finally in the vanadium(III)?CBipy?CH2Glu system, [V(Bipy)(H2Glu)]3+ and [V(Bipy)(Glu)]+. The respective stability constants were determined and the specie distribution diagrams as a function of pH are briefly discussed.  相似文献   

2.
In this work, the ternary complex formation among copper(II), 6-methylpicolinic acid (H6Mepic) as primary ligand, and the amino acids aspartic acid (H2Asp), glutamic acid (H2Glu) and histidine (HHis) as secondary ligands, were studied in aqueous solution at 25 °C using 1.0 mol·dm?3 KNO3 as the ionic medium. Analysis of the potentiometric data using the least squares computational program LETAGROP indicates formation of the species [Cu(6Mepic)]+, Cu(6Mepic)(OH), [Cu(6Mepic)(OH)2]?, Cu(6Mepic)2 and [Cu(6Mepic)3]? in the binary Cu(II)–H6Mepic system. In the ternary Cu(II)–H6Mepic–H2Asp system the complexes [Cu(6Mepic)(H2Asp)]+, Cu(6Mepic)(HAsp), [Cu(6Mepic)(Asp)]? and [Cu(6Mepic)(Asp)(OH)]2? were observed. In the case of the Cu(II)–H6Mepic–H2Glu system the complexes Cu(6Mepic)(HGlu), [Cu(6Mepic)(Glu)]?, [Cu(6Mepic)(Glu)(OH)]2? and [Cu(6Mepic)(glu)(OH)2]3? were detected. Finally, in the Cu(II)–H6Mepic–HHis system the complexes [Cu(6Mepic)(HHis)]+, Cu(6Mepic)(His) and [Cu(6Mepic)(His)(OH)]? were observed. The species distribution diagrams as a function of pH are briefly discussed.  相似文献   

3.
In this work we present results for the speciation of the ternary complexes formed in the aqueous vanadium(III)–dipicolinic acid and the amino acids cysteine (H2cys), histidine (Hhis), aspartic acid (H2asp) and glutamic acid (H2glu) systems (25 °C; 3.0 mol⋅dm−3 KCl as ionic medium), determined by means of potentiometric measurements. The potentiometric data were analyzed with the least-squares program LETAGROP, taking into account the hydrolysis of vanadium(III), the acid-base reactions of the ligands, and the binary complexes formed. Under the experimental conditions (vanadium(III) concentration = 2–3 mmol⋅dm−3 and vanadium(III): dipicolinic acid: amino acid molar ratio 1:1:1, 1:1:2 and 1:2:1), the following species [V(dipic)(H2asp)]+, [V(dipic)(Hasp)], [V(dipic)(asp)], [V(dipic)(asp)(OH)]2−, and [V(dipic)(asp)(OH)2]3− were found in the vanadium(III)–dipicolinic acid–aspartic acid system. In the vanadium(III)–dipicolinic acid–glutamic acid system [V(Hdipic)(H2glu)]2+, [V(dipic)(H2glu)]+, [V(dipic)(Hglu)], [V(dipic)(Hglu)(OH)], and [V(dipic)(Hglu)(OH)2]2− were observed. In the vanadium(III)–dipicolinic acid–cysteine system the complexes [V(dipic)(H2cys)]+, [V(dipic)(Hcys)], [V(dipic)(cys)], and [V(dipic)(cys)(OH)]2− were present. And finally, in the vanadium(III)–dipicolinic acid–histidine system the complexes [V(Hdipic)(Hhis)]2+, [V(dipic) (Hhis)]+[\mathrm{V}(\mathrm{dipic}) (\mathrm{Hhis})]^{+}, [V(dipic)(his)], [V(dipic)(his)(OH)], and [V(dipic)(his)(OH)2]2− were observed. The stability constants of these complexes were determined. The species distribution diagrams as a function of pH are briefly discussed.  相似文献   

4.
The complex species formed between vanadium(III)?C2,2??-bipyridine (Bipy) and the small blood serum bioligands lactic (HLac), oxalic (H2Ox), citric (H3Cit) and phosphoric (H3PO4) acids were studied in aqueous solution by means of electromotive forces measurements emf(H) at 25?°C and 3.0?mol?dm?3 KCl as the ionic medium. The data were analyzed using the least-squares computational program LETAGROP, taking into account the hydrolytic products of vanadium(III) and the binary complexes formed. Formation of the complexes [V(Bipy)(Lac)]2+, [V(Bipy)(Lac)2]+, [V(OH)2(Bipy)(Lac)] and [V2O(Bipy)2(Lac)2]? were observed in the vanadium(III)?CBipy?CHLac system. Also, the species [V(Bipy)(HOx)]2+, [V(Bipy)(Ox)]+, [V(OH)(Bipy)(Ox)], [V(OH)2(Bipy)(Ox)]? and [V(OH)3(Bipy)(Ox)]2? were found in the vanadium(III)?CBipy?CH2Ox system, the complexes [V(Bipy)(HCit)]+, [V(Bipy)(Cit)], [V(OH)(Bipy)(Cit)]? and [V(OH)2(Bipy)(Cit)]2? were found in the vanadium(III)?CBipy?CH3Cit system, and the species [V(Bipy)(H2PO4)]2+ and [V(Bipy)(HPO4)]+ were detected in the vanadium(III)?CBipy?CH3PO4 system. The stability constants of these complexes were determined.  相似文献   

5.
In this paper we present speciation results for the ternary vanadium(III)–dipicolinic acid (H2dipic) systems with the amino acids glycine (Hgly), proline (Hpro), α-alanine (Hα-ala), and β-alanine (Hβ-ala), obtained by means of electromotive forces measurements emf(H) using 3.0 mol⋅dm−3 KCl as the ionic medium and a temperature of 25 °C. The experimental data were analyzed by means of the computational least-squares program LETAGROP, taking into account hydrolysis of the vanadium(III) cation, the respective stability constants of the binary complexes, and the acid base reactions of the ligands, which were kept fixed during the analysis. In the vanadium(III)–dipicolinic acid–glycine system, formation of the ternary [V(Hdipic)(Hgly)]2+, [V(dipic)(Hgly)]+, [V(dipic)(gly)], [V(dipic)(gly)(OH)] and [V(dipic)(gly)(OH)2]2− was observed; in the case of the vanadium(III)–dipicolinic acid–proline system the ternary complexes [V(Hdipic) (Hpro)]2+, [V(dipic)(Hpro)]+, [V(dipic)(pro)] and [V(dipic)(pro)(OH)] were observed; in the vanadium(III)–picolinic acid–α-alanine were observed [V(Hdipic)(Hα-ala)]2+, [V(dipic) (Hα-ala)]+, [V(dipic)(αala)], [V(dipic)(α-ala)(OH)] and [V(dipic)(α-ala)(OH)2]2−; and in the vanadium(III)–dipicolinic acid–β-ala system the complexes [V(dipic) (Hβ-ala)]+, [V(dipic)(β-ala)], [V(dipic)(β-ala)(OH)] and [V(dipic)(β-ala)(OH)2]2− were observed. Their respective stability constants were determined, and we evaluated values of Δlog 10 K″ in order to understand the relative stability of the ternary complexes compared to the corresponding binary ones. The species distribution diagrams are briefly discussed as a function of pH.  相似文献   

6.
The complex species formed in aqueous solutions (25 °C, I=3.0 mol⋅dm−3 KCl ionic medium) between the V(III) cation and the ligands 6-methylpicolinic acid (MePic, HL), salicylic acid (H2Sal, H2L) and phthalic acid (H2Phtha, H2L) have been studied by potentiometric and spectrophotometric measurements. Application of the least-squares computer program LETAGROP to the experimental emf(H) data, taking into account the hydrolytic species and hydrolysis constants of V(III), indicates that under the employed experimental conditions the complexes [VL]2+, [V(OH)L]+, [V(OH)2L], [V(OH)3L], [VL2]+, [VL3] and [V2OL4] form in the vanadium(III)–MePic system. Were observed the complexes [VL]+, [VL2], [V(OH)L2]2− and [VL3]3− in the vanadium(III)–H2Sal system, and the species [VHL]2+, [VL]+, [V(OH)L], [VHL2], [VL2], [V(OH)L2]2−, [V(OH)2L2]3− and [VL3]3− in the vanadium(III)–H2Phtha system. The stability constants of these complexes were determined by potentiometric measurements, and spectrophotometric measurements were made in order to perform a qualitative characterization of the complexes formed in aqueous solution.  相似文献   

7.
We studied speciation of the mixed-ligand complex formation equilibria of vanadium(III) with both 2,2??-bipyridine (Bipy) and the amino acids glycine (HGly), proline (HPro), ??-alanine (H??Ala), and ??-alanine (H??Ala) by means of electromotive forces measurements emf(H) using 3.0?mol?dm?3 KCl as the ionic medium at 25 °C. The experimental data were analyzed by means of the computational least-squares program LETAGROP, taking into account the hydrolysis of the vanadium(III) cation, the respective stability constants of the binary complexes, and the acid/base reactions of the ligands which were kept fixed during the analysis. In all four amino acid systems studied we observed the complexes [V2O(Bipy)(B)]3+, [V2O(Bipy)2(B)2]2+, [V(OH)(Bipy)(B)2] and [V(OH)2(Bipy)(B)], where B represents the deprotonated form of the amino acids studied in this work. The respective stability constants were determined and the species distribution diagrams as a function of pH are briefly discussed.  相似文献   

8.
The ternary complexation of neodymium(III) and samarium(III) with triethylene glycol (EO3) and picrate anion (Pic) were characterized by elemental analyses, FTIR (Fourier-transform infrared) spectroscopy, single crystal X-ray diffraction, and photoluminescence (PL). Both the [Nd(Pic)(H2O)2(NO3)(EO3)](Pic) and [Sm(Pic)(H2O)2(NO3)(EO3)](Pic)·H2O complexes were isostructural with a ten-coordination number. In both complexes, the picrate and nitrate anions were coordinated to Ln(III) in a bidentate manner, and with the the EO3 ligand in a tetradentate manner, the addition of two water molecules maintained a ten-coordination number. The lighter lanthanide-picrate complexes formed a ten-coordination number due to the lanthanide contraction effect, acyclic polyether chain length, and number of donor oxygen atoms. The acyclic EO3 ligand affected photoluminescent intensity and its conformation on the structure of the [Ln(Pic)(NO3)(H2O)2(EO3)]+ moiety. Photoluminescent measurement showed complex Nd(III) emissions at 403, 486, and 682?nm, with the strongest emission peak at 403?nm. Formation of these peaks occurred due to the intraligand π–π transitions of the Pic anion. The Sm(III) complex exhibited the emission characteristic of the Sm(III) ion in the red spectral region at 616.7?nm (4G5/26H9/2 transition), even though the ligand emissions were also observed in the PL spectrum. The emission intensity of the 4f–4f transitions in the Sm complex was significantly higher than that found in its salt. We noted that the [Sm(Pic)(H2O)2(NO3)(EO3)](Pic)·H2O complex was an excellent red-light-emitter and would be considered as a candidate material for organic light emitting diodes.  相似文献   

9.
The action of elemental sulfur with vanadium (II) porphyrins complexes [VII(por)(THF)2] (por = porphyrinate) affords the thiovanadyl porphyrins [VIV(por)(S)]. EXAFS spectroscopy at the V K-edge of [VIV(oep)(S)] confirms the axial symmetry of these complexes.  相似文献   

10.
The complex species formed between vanadium(III) and 1,10-phenanthroline (phen), 2,2′-bipyridine (bipy), and 8-hydroxyquinoline (8hq) were studied in aqueous solution by means of electromotive forces measurements, emf(H), at 25 °C with 3.0 mol⋅dm−3 KCl as the ionic medium. The potentiometric data were analyzed using the least-squares computational program LETAGROP, taking into account the hydrolytic vanadium(III) species formed in solution. Analysis of the vanadium(III)–phen system data shows the formation of [VHL]4+, [V(OH)L]2+, [V2OL2]4+ and [V2OL4]4+ complexes. In the vanadium(III)–bipy system the [VHL]4+, [V(OH)L]2+, [V2OL2]4+ and [V2OL4]4+ complexes were observed, and in the vanadium(III)–8hq system the complexes [V(OH)L]+, [V(OH)2L], [VL2]+ and [VL3] were detected.  相似文献   

11.
Ternary complex formation reactions were studied between vanadium(III), dipicolinic acid and small molecular weight blood serum components: lactic, oxalic, citric and ortophosphoric acids. The electromotive force measurement permitted us to determine the chemical speciation of the complexes formed. In the vanadium(III)–dipicolinic acid–lactic acid system the complexes detected were: V(dipic)(lac), V(dipic)(lac)(OH) and V(dipic)(lac)(OH)22-(\mathrm{OH})_{2}^{2-}. In the vanadium(III)–dipicolinic acid–oxalic acid system the observed complexes were: V(dipic)(ox), V(dipic)(ox)(Hox)2− and V(dipic)(ox)23-(\mathrm{ox})_{2}^{3-}. In the vanadium(III)–dipicolinic acid–citric acid system the complexes V(dipic)(Hcit), V(dipic)(cit)2−, V(dipic)(cit)(OH)3−, V(dipic)(cit)(OH)24-(\mathrm{OH})_{2}^{4-} and V(dipic)(cit)(OH)35-(\mathrm{OH})_{3}^{5-} were detected. Finally in the vanadium(III)–dipicolinic acid–phosphoric acid system the complexes V(dipic)(H2PO4) and V(dipic)(HPO4) were observed. The UV-vis spectra allowed us to perform a qualitative characterization of the complexes formed in aqueous solution.  相似文献   

12.
Two vanadium (IV) complexes [VIVO(Haeae-sal)(MeOH)]+ ( 1 ) and [VIVO(Haeae-hyap)(MeOH)]+ ( 2 ) were prepared by reacting [VO(acac)2] with ligands [H2aeae-sal] ( I ) and [H2aeae-hyap] ( II ) respectively. Condensation of 2-(2-aminoethylamino)ethanol with salicylaldehyde and 2-hydroxyacetophenone produces the ligands ( I ) and ( II ) respectively. Both vanadium complexes 1 and 2 are sensitive towards aerial oxygen in solution and rapidly convert into vanadium(V) dioxido species. Vanadium(V) dioxido species crystalizes as the dimeric form in the solid-state. Single-crystal XRD analysis suggests octahedral geometry around each vanadium center in the solid-state. To access the benefits of heterogeneous catalysis, vanadium(V) dioxido complexes were anchored into the polymeric chain of chloromethylated polystyrene. All the synthesized neat and supported vanadium complexes have been studied by a number of techniques to confirm their structural and functional properties. Bromoperoxidase activity of the synthesized vanadium(V) dioxido complexes 3 and 4 was examined by carrying out oxidative bromination of salicylaldehyde and oxidation of thioanisole. In the presence of hydrogen peroxide, 3 shows 94.4% conversion ( TOF value of 2.739 × 102 h−1) and 4 exhibits 79.0% conversion (TOF value of 2.403 × 102 h−1) for the oxidative bromination of salicylaldehyde where 5-bromosalicylaldehyde appears as the major product. Catalysts 3 and 4 also efficiently catalyze the oxidation of thioanisole in the presence of hydrogen peroxide where sulfoxide is observed as the major product. Covalent attachment of neat catalysts 3 and 4 into the polymer chain enhances substrate conversion (%) and their catalytic efficiency increases many folds, both in the oxidative bromination and oxidation of thioether. Polymer supported catalysts 5 displayed 98.8% conversion with a TOF value of 1.127 × 104 h−1 whereas catalyst 6 showed 95.7% conversion with a TOF value of 4.675 × 103 h−1 for the oxidative bromination of salicylaldehyde. These TOF values are the highest among the supported vanadium catalysts available in the literature for the oxidative bromination of salicylaldehyde.  相似文献   

13.
The following chromium(III) complexes with serine (Ser) and aspartic acid (Asp) were obtained and characterized in solution: [Cr(ox)2(Aa)]2− (where Aa = Ser or Asp), [Cr(AspH−1)2] and [Cr(ox)(Ser)2]. In acidic solutions, [Cr(ox)2(Aa)]2− undergoes acid-catalysed aquation to cis-[Cr(ox)2(H2O)2] and the appropriate amino acid. [Cr(ox)(Ser)2] undergoes consecutive acid-catalysed Ser liberation to give [Cr(ox)(H2O)4]+, and the [Cr(Asp)2] ion is converted into [Cr(Asp)(H2O)4]2+. Kinetics of these reactions were studied under isolation conditions. The determined rate expressions for all the reactions are of the form: k obs = a + b[H+]. Reaction mechanisms are proposed, and the meaning of the determined parameters has been established. Evidence for the formation of an intermediate with O-monodentate amino acid is given. The effect of the R-substituent at the α-carbon atom of the amino acid on the complex reactivity is discussed.  相似文献   

14.
Four new solid ternary complexes of lanthanide with 2,6-pyridine dicarboxylic acid and α-picolinic acid [Ln(DPA)(Lα)(H2O)] · 2H2O (Ln = La3+, Ce3+, Eu3+, or Gd3+; DPA = 2,6-pyridine dicarboxylic acid; HLα = α-picolinic acid) have been synthesized and characterized by elemental analysis, molar conductance, FT-IR, UV–Vis, and TG–DTA. The antibacterial activities indicate that all the complexes exhibit antibacterial ability against Escherichia coli and Staphylococcus aureus with broad antimicrobial spectra. The anticancer activity of the La complex against K562 tumor cell in vitro is measured using methyl thiazolyl tetrazolium (MTT) colorimetry and flow cytometry. The La complex can induce K562 tumor cell apoptosis, presenting the best apoptosis effect by acting on the S period after inducing K562 tumor cell for 72 h.  相似文献   

15.
Ternary complex species formed by the V3+ cation with the picolinic acid (Hpic, HL) and dipicolinic acid (H2dipic, H2L) ligands in aqueous solutions have been studied potentiometrically (25 °C, I=3.0 mol⋅dm−3 KCl ionic medium) and by spectrophotometric measurements. Application of the least-squares computer program LETAGROP to the experimental emf (H) data, taking into account the hydrolytic V(III) species and the binary V3+–picolinic acid and V3+–dipicolinic acid complexes, shows that under the investigated conditions the following ternary complexes are formed: [V(dipic)(pic)], [V(dipic)(pic)(OH)] and [V(dipic)(pic)2]. The stability constants of the ternary complexes were determined by potentiometric measurements whereas the spectrophotometric measurements were done in order to obtain a qualitative characterization of the complexes formed in aqueous solution.  相似文献   

16.
The complex species formed in aqueous solution (25 C, I = 3.0 mol-dm−3 KCl ionic medium) between V3+ cation and the ligands: picolinic acid (Hpic, HL) and dipicolinic acid (H2dipic, H2L), have been studied potentiometrically and by spectrophotometric measurements. The application of the least-squares computer program LETAGROP to the experimental emf (H) data, taking into account the hydrolytic species of V3+ ion, indicates that under the employed experimental conditions, the formation of the complexes [VL]2+, [V(OH)L]+, [VL2]+, [VL3], [V2OL4] with picolinic acid and the complexes [VL]+, [V(OH)L], [V(OH)2L], [V(HL)(L)], and [VL2] with dipicolinic acid were observed. The stability constants of the complexes formed were determined by potentiometric measurements, and spectrophotometric measurements were done in order to perform a qualitative characterization of the complexes formed in aqueous solution.  相似文献   

17.
Vanadium(V) complexes with hydrazone-based ONO and ONN donor ligands that partly model active-site structures of vanadate-dependent haloperoxidases have been reported. On reaction with [VO(acac)2] (Hacac = acetylacetone) under nitrogen, these ligands generally provide oxovanadium(IV) complexes [VO(ONO)X] (X = solvent or nothing) and [VO(acac)(ONN)], respectively. Under aerobic conditions, these oxovanadium(IV) species undergo oxidation to give oxovanadium(V), dioxovanadium (V) or μ-oxobisoxovanadium(V) species depending upon the nature of the ligand. Anionic and neutral dioxovanadium(V) complexes slowly deoxygenate in methanol to give monooxo complexes [VO(OMe)(MeOH)(ONO)]. The anionic complexes [VO2(ONO)]- can also be convertedin situ on acidification to oxohydroxo complexes [VO(OH)(HONO)]+ and to peroxo complexes [VO(O2)(ONO)]-, and thus to the species assumed to be intermediates in the haloperoxidases activity of the enzymes. In the presence of catechol (H2cat) and benzohydroxamic acid (H2bha), oxovanadium (IV) complexes, [VO (acac)(ONN)] gave mixed-chelate oxovanadium(V) complexes [VO(cat)(ONN)] and [VO(bha)(ONN)] respectively. These complexes are not very stable in solution and slowly convert to the corresponding dioxo species [VO2(ONN)] as observed by51V NMR and electronic absorption spectroscopic studies.  相似文献   

18.
Solution equilibria of the ternary systems Ni(II)–picolinic acid (Hpic) and the amino acids aspartic acid (H2asp), glutamic acid (H2glu), cysteine (H2cys) and histidine (Hhis), where the amino acids are denoted as H i L, have been studied pH-metrically. The formation constants of the resulting mixed ligand complexes have been determined at 25 °C using a ionic strength 1.0 mol·dm?3 NaCl. In the Ni(II)–Hpic–H2asp and Ni(II)–Hpic–H2glu systems, the complexes [Ni(pic)H2L]+, Ni(pic)HL, [Ni(pic)L]? and [Ni(pic)L(OH)]2? were detected. In the Ni(II)–Hpic–H2cys system the complexes [Ni(pic)H2L]+ and [Ni(pic)L]? are present. Additionally, in the Ni(II)–Hpic–Hhis system the species [Ni(Hpic)HL]2+, Ni(pic)L and [Ni(pic)L(OH)]? were identified. The species distribution diagrams as functions of pH are briefly discussed.  相似文献   

19.
The kinetics of oxidation of [CrIII(Dpc)(Asp)(H2O)2] (Dpc = dipicolinic acid and Asp = DL ‐aspartic acid) by N‐bromosuccinimide (NBS) in aqueous solution have been found to obey the equation: where k2 is the rate constant for the electron transfer process, K1 is the equilibrium constant for deprotonation of [CrIII(Dpc)(Asp)(H2O)2], K2 and K3 are the pre‐equilibrium formation constants of precursor complexes [CrIII(Dpc)(Asp)(H2O)(NBS)] and [CrIII(Dpc)(Asp)(H2O)(OH)(NBS)]?. Values of k2 = 4.85 × 10?2 s?1, K1 = 1.85 × 10?7 mol dm?3, and K2 = 78.2 mol?1 dm3 have been obtained at 30°C and I = 0.1 mol dm?3. The experimental rate law is consistent with a mechanism in which the deprotonated [CrIII(Dpc)(Asp)(H2O)(OH)]? is considered to be the most reactive species compared to its conjugate acid. It is assumed that electron transfer takes place via an inner‐sphere mechanism. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 394–400, 2004  相似文献   

20.
Reaction of five N,N′-bis(aryl)pyridine-2,6-dicarboxamides (H2L-R, where H2 denotes the two acidic protons and R (R = OCH3, CH3, H, Cl and NO2) the para substituent in the aryl fragment) with [Ru(trpy)Cl3](trpy = 2,2′,2″-terpyridine) in refluxing ethanol in the presence of a base (NEt3) affords a group of complexes of the type [RuII(trpy)(L-R)], each of which contains an amide ligand coordinated to the metal center as a dianionic tridentate N,N,N-donor along with a terpyridine ligand. Structure of the [RuII(trpy)(L-Cl)] complex has been determined by X-ray crystallography. All the Ru(II) complexes are diamagnetic, and show characteristic 1H NMR signals and intense MLCT transitions in the visible region. Cyclic voltammetry on the [RuII(trpy)(L-R)] complexes shows a Ru(II)–Ru(III) oxidation within 0.16–0.33 V versus SCE. An oxidation of the coordinated amide ligand is also observed within 0.94–1.33 V versus SCE and a reduction of coordinated terpyridine ligand within −1.10 to −1.15 V versus SCE. Constant potential coulometric oxidation of the [RuII(trpy)(L-R)] complexes produces the corresponding [RuIII(trpy)(L-R)]+ complexes, which have been isolated as the perchlorate salts. Structure of the [RuIII(trpy)(L-CH3)]ClO4 complex has been determined by X-ray crystallography. All the Ru(III) complexes are one-electron paramagnetic, and show anisotropic ESR spectra at 77 K and intense LMCT transitions in the visible region. A weak ligand-field band has also been shown by all the [RuIII(trpy)(L-R)]ClO4 complexes near 1600 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号