首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
混合制冷剂循环液化天然气流程的优化分析   总被引:5,自引:0,他引:5  
在液化天然气流程中,混合制冷剂循环液化天然气流程由于其机组设备少、流程简单、管理方便等优点而备受国内外关注。本文对两种混合制冷剂循环液化天然气流程分别以流程中压缩机耗功最小、压缩机耗功与丙烷预冷量之和最小为目标函数进行优化,得到了最优流程参数及相应的流程性能参数;并对计算结果进行分析。  相似文献   

2.
混合制冷剂循环(MRC)液化天然气流程的设备模拟   总被引:3,自引:1,他引:2  
混合制冷剂液化天然气流程中 ,涉及到很多设备。文中介绍了压缩机、膨胀机和节流阀、分离器、混合器、多股流换热器这五类设备的热力学状态的计算方法 ,并与国外流程计算中的相应模块计算结果相比较 ,模拟结果十分接近 ,从而表明所进行的设备热力学状态模拟是正确的  相似文献   

3.
提出一种混合制冷剂循环膨胀机内复叠天然气液化流程(Hybrid JT-exp)。采用自主开发的流程模拟程序,分别对C3/MRC流程、AP-XTM流程和Hybrid JT-exp流程进行了模拟,并以单位能耗为指标对三种流程进行了优化。优化结果发现,Hybrid JT-exp流程综合特性曲线匹配效果最好,其流程总功耗和单位能耗与AP-XTM流程相当;与C3/MRC流程相比,其流程总功耗降低约9.5%,单位能耗降低约9.6%。Hybrid JT-exp流程可作为AP-XTM流程的一种替代技术方案。  相似文献   

4.
混合制冷剂循环液化天然气流程(火用)分析   总被引:1,自引:0,他引:1  
带丙烷预冷的混合制冷剂循环液化天然气流程具有高效及流程相对简单的优点.本文在对流程进行热力学分析的基础上,对流程进行(火用)分析.计算了流程中各设备的(火用)损失,计算结果表明,压缩机的(火用)损失约占整个流程(火用)损失的50%,换热器的(火用)损失约占总(火用)损失的26%.本文还分析了产生(火用)损失的原因,提出降低(火用)损失的措施.  相似文献   

5.
鉴于煤炭清洁利用的必要性以及国内天然气供不应求的格局,煤制天然气(SNG)具有了一定的发展空间。以液化的方式储运煤制天然气是应对我国特殊的天然气市场结构的较好选择。而由于煤制天然气与常规天然气不同的组成,特别是氢气的存在,需要为其设计专门的液化流程。为了给流程的设计提供参考,在HYSYS软件上模拟分析了常规天然气液化流程(氮气膨胀流程和混合制冷剂流程)用于液化煤制天然气的可行性及其特点,发现常规天然气液化流程可以用于液化煤制天然气,只是流程的单位能耗稍有增加。另外,还通过模拟分析了精馏分离氢气对液化流程所产生的影响。  相似文献   

6.
提出一种新型的LP-DMRC天然气液化循环,并利用软件对其进行了流程模拟。结果表明它具有流程简单、循环效率高等优点,不仅适用于大型液化工厂,也可用于小型天然气液化装置,具有良好的发展前景。  相似文献   

7.
制冷剂制冷效果与其配比复杂程度相互制约,使制冷剂的合理配比问题成为C3/MRC液化工艺中的难点之一。依据混合制冷剂中不同组分在不同温区制冷的原理,初步选定混合制冷剂的基本组成为N_2、CH_4、C_2H_4、C_3H_8、n-C_4H_(10)和n-C_5H_(12)。通过HYSYS模拟得到制冷效果,分析得出各组分在制冷过程中的作用。在此基础上,设计正交实验并得出模拟结果,采用逐步回归的方法回归多项式,以比功耗作为目标函数进行优化分析,最后得到优化配方。此方法简单高效、准确性好,具有较高的工程应用价值。  相似文献   

8.
合成氨厂排放的驰放气中含有CH4、H2和N2,利用低温冷冻技术,可以回收其中的CH4,并进一步回收H2和N2,对企业节能降耗、提高经济效益有着至关重要的作用。文中利用Unisim化工流程模拟计算软件,对两种不同的合成驰放气制取LNG工艺(混合制冷剂工艺和氮气循环膨胀制冷工艺)进行模拟,并对两种工艺路线从操作和投资回报方面进行了分析。结果表明:从能耗、操作以及投资回报比方面,采用混合制冷剂工艺制取LNG具有明显的优势;并且其结果对用户对工艺的选择具有一定指导意义。  相似文献   

9.
本文采用改进型PT方程,对影响新型精馏型天然气液化循环中多元混合制冷剂绝热混合效应的各项关键参数进行了深入的分析研究.结果表明,混合效应随混合压力变化有峰值存在,混合前混合制冷剂的两相状态可以产生较大的混合效应;混合效应随混合前流量比变化的峰值出现在混合后混合工质干度接近于1时;混合效应随混合前温度变化也有峰值存在,当...  相似文献   

10.
针对城市天然气高中压管网调压站的压力能回收利用,综合考虑LNG储运过程中广泛面临的BOG(Boiloff gas)问题,提出了一种结合混合工质循环、利用天然气压力能生产高品质LNG的小型液化流程。研究分析了预冷温度、动部件效率、低温换热器性能及液化天然气温度对流程天然气液化比的影响,优化的流程结果参数表明,当所得液化天然气储存在4bar,-160℃时,流入系统18.26%的天然气可被液化,其余部分外输中压管网;提出了在LNG买卖市场中根据LNG品质议价的建议,以从根本上减少LNG储运、装卸及使用过程的BOG排放量,进而减少经济损失与能源浪费。该流程可应用于城市燃气调峰,也可进行二次销售,具有较好实用性和经济性。  相似文献   

11.
本文基于Aspen plus软件对燃用低热值煤气的燃气蒸汽联合循环系统进行了模拟仿真。在该仿真平台上对系统设计工况进行了计算验证。在设计工况下,燃气透平进口温度为1000~1050℃,模拟计算结果为1016.2℃。燃气透平出口温度设计参数为517.2℃,模拟结果为519.2℃。结果表明仿真模型能够准确模拟系统稳态情况的各种工况。本文还运用矩阵模式热经济学的方法对系统设计工况下的(?)流成本进行了计算分析,对系统进行了技术经济评价。燃气轮机和蒸汽轮机电能耗费的能量成本分别为22.2,24.06和16.64$·GJ-1。  相似文献   

12.
Gas-induced geodynamic phenomena can occur during underground mining operations if the porous structure of the rock is filled with gas at high pressure. In such cases, the original compact rock structure disintegrates into grains of small dimensions, which are then transported along the mine working space. Such geodynamic events, particularly outbursts of gas and rock, pose a danger both to the life of miners and to the functioning of the mine infrastructure. These incidents are rare in copper ore mining, but they have recently begun to occur, and have not yet been fully investigated. To ensure the safety of mining operations, it is necessary to determine parameters of the rock–gas system for which the energy of the gas will be smaller than the work required to disintegrate and transport the rock. Such a comparison is referred to as an energy balance and serves as a starting point for all engineering analyses. During mining operations, the equilibrium of the rock–gas system is disturbed, and the rapid destruction of the rock is initiated together with sudden decompression of the gas contained in its porous structure. The disintegrated rock is then transported along the mine working space in a stream of released gas. Estimation of the energy of the gas requires investigation of the type of thermodynamic transformation involved in the process. In this case, adiabatic transformation would mean that the gas, cooled in the course of decompression, remains at a temperature significantly lower than that of the surrounding rocks throughout the process. However, if we assume that the transformation is isothermal, then the cooled gas will heat up to the original temperature of the rock in a very short time (<1 s). Because the quantity of energy in the case of isothermal transformation is almost three times as high as in the adiabatic case, obtaining the correct energy balance for gas-induced geodynamic phenomena requires detailed analysis of this question. For this purpose, a unique experimental study was carried out to determine the time required for heat exchange in conditions of very rapid flows of gas around rock grains of different sizes. Numerical simulations reproducing the experiments were also designed. The results of the experiment and the simulation were in good agreement, indicating a very fast rate of heat exchange. Taking account of the parameters of the experiment, the thermodynamic transformation may be considered to be close to isothermal.  相似文献   

13.
This study examined the trilateral flash cycle characteristics (TFC) and partially evaporating cycle (PEC) using a low-grade heat source at 80 °C. The evaporation temperature and mass flow rate of the working fluids and the expander inlet’s quality were optimized through pinch point observation. This can help advance methods in determining the best design points and their operating conditions. The results indicated the partially evaporating cycle could solve the high-volume ratio problem without sacrificing the net power and thermal efficiency performance. When the system operation’s saturation temperature decreased by 10 °C, the net power, thermal efficiency, and volume ratio of the trilateral flash cycle system decreased by approximately 20%. Conversely, with the same operational conditions, the net power and thermal efficiency of the partially evaporating cycle system decreased by only approximately 3%; however, the volume ratio decreased by more than 50%. When the system operating temperature was under 63 °C, each fluid’s volume ratio could decrease to approximately 5. The problem of high excessive expansion would be solved from the features of the partially evaporating cycle, and it will keep the ideal power generation efficiency and improve expander manufacturing.  相似文献   

14.
通过建立质子交换膜燃料电池阴极气场的三维简化模型,研究了不同进气方式、不同进出气总管尺寸对电池堆流量分布的影响,并提出从单电池流道深度的角度优化气场分布的改进方案。结果表明,与单入口进气方式相比,双入口进气方式效果更优;采用2-2型进气方案时流量分布最为均匀,进气功耗最小;增大进气总管的宽度可以使电堆流量分布更加均匀;各单电池合理采用非均匀深度流道可以有效提高电池堆流量分布均匀性。  相似文献   

15.
(1) Background: the shipping industry forced ships to adopt new energy-saving technologies to improve energy efficiency. With the timing modulation for the marine low-speed diesel engine S-CO2 Brayton cycle, the waste heat recovery system is optimized to improve fuel economy. (2) Methods: with the 6EX340EF marine low-speed diesel engine established in AVL Cruise M and verified by the bench test data, the model of the S-CO2 Recompression Brayton Cycle (SCRBC) system for the low-speed engine flue gas waste heat recovery was developed in EBSILON, and verified by SANDIA experimental data. On this basis, the effects of injection timing and valve timing parameters on the comprehensive performance of the main engine and the waste heat recovery system were investigated. By optimizing the timing modulation parameters through multi-objective genetic algorithm (MOGA) and evaluating the flue gas waste heat recovery from the perspective of thermodynamic performance and emission reduction, the research on the performance modulation method of the S-CO2 Brayton Cycle for flue gas waste heat in marine low-speed engines has been completed. (3) Results: the SCRBC with waste heat modulation will further increase the total power and efficiency, which in turn brings about a reduction in the fuel consumption rate. The efficiency of the SCRBC system with the addition of waste heat modulation increases by 2.28%, 1.04% and 2.07% at 50%, 75% and 100%, respectively. After adding the residual heat modulation, the maximum annual CO2 emission reduction of 748.51 × 103 kg·a−1 occurred at 50% load; with the exergy analysis, the cooler has the largest system exergy loss of 165 kW, with the exergy loss efficiency of 2.06% under 100% load. (4) Conclusions: the research on the performance modulation method of S-CO2 Brayton cycle for flue gas waste heat in the marine low-speed engine has been completed, which further improves the efficiency of the system and can be extended to other engines.  相似文献   

16.
该实验利用测量气体比热容比的经典装置,证明小球装置中做简谐振动,并依据周期推导气体比热容比理论公式,分析了测定气体比热容比的误差来源采用计算机实时测量技术获得气体在任意时刻的压强,利用比热容比的相对不确定度确定了测量仪器,从而利用精确的测量量求得气体比热容比值,利用确定的仪器测量,最终实验相对百分误差控制在0.5%.  相似文献   

17.
The natural gas hydrate plugging problems in the mixed pipeline are becoming more and more serious. The hydrate plugging has gradually become an important problem to ensure the safety of pipeline operation. The deposition and heat transfer characteristics of natural gas hydrate particles in the spiral flow pipeline have been studied. The DPM model (discrete phase model) was used to simulate the motion of solid particles, which was used to simulate the complex spiral flow characteristics of hydrate in the pipeline with a long twisted band. The deposition and heat transfer characteristics of gas hydrate particles in the spiral flow pipeline were studied. The velocity distribution, pressure drop distribution, heat transfer characteristics, and particle settling characteristics in the pipeline were investigated. The numerical results showed that compared with the straight flow without a long twisted band, two obvious eddies are formed in the flow field with a long twisted band, and the velocities are maximum at the center of the vortices. Along the direction of the pipeline, the two vortices move toward the pipe wall from near the twisted band, which can effectively carry the hydrate particles deposited on the wall. With the same Reynolds number, the twisted rate was greater, the spiral strength was weaker, the tangential velocity was smaller, and the pressure drop was smaller. Therefore, the pressure loss can be reduced as much as possible with effect of the spiral flow. In a straight light flow, the Nusselt number is in a parabolic shape with the opening downwards. At the center of the pipe, the Nusselt number gradually decreased toward the pipe wall at the maximum, and at the near wall, the attenuation gradient of the Nu number was large. For spiral flow, the curve presented by the Nusselt number was a trough at the center of the pipe and a peak at 1/2 of the pipe diameter. With the reduction of twist rate, the Nusselt number becomes larger. Therefore, the spiral flow can make the temperature distribution more even and prevent the large temperature difference, resulting in the mass formation of hydrate particles in the pipeline wall. Spiral flow has a good carrying effect. Under the same condition, the spiral flow carried hydrate particles at a distance about 3–4 times farther than that of the straight flow.  相似文献   

18.
通过计算机模拟工厂实际批量生产加工过程中的误差分布,可以对依据经济公差思想,经过计算机优化计算得到的光学公差对产品合格率可能产生的影响进行分析和预测。本文讨论了这一过程的基本原理  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号