首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Glassy carbon electrodes (GCE) were sequentially modified by cysteamine-capped gold nanoparticles (AuNp@cysteamine) and PAMAM dendrimers generation 4.5 bearing 128-COOH peripheral groups (GCE/AuNp@cysteamine/PAMAM), in order to explore their capabilities as electrochemical detectors of uric acid (UA) in human serum samples at pH 2. The results showed that concentrations of UA detected by cyclic voltammetry with GCE/AuNp@cysteamine/PAMAM were comparable (deviation <±10%; limits of detection (LOD) and quantification (LOQ) were 1.7 × 10−4 and 5.8 × 10−4 mg dL−1, respectively) to those concentrations obtained using the uricase-based enzymatic-colorimetric method. It was also observed that the presence of dendrimers in the GCE/AuNp@cysteamine/PAMAM system minimizes ascorbic acid (AA) interference during UA oxidation, thus improving the electrocatalytic activity of the gold nanoparticles.  相似文献   

2.
Jans H  Jans K  Demeyer PJ  Knez K  Stakenborg T  Maes G  Lagae L 《Talanta》2011,83(5):5-1585
In this study a double-bead sandwich assay, employing magnetic nanoparticles and gold nanoparticles is proposed. The magnetic nanoparticles allow specific capturing of the analyte in biological samples, while the optical properties of the gold nanoparticles provide the signal transduction. We demonstrated that a major improvement in the assay sensitivity was obtained by selecting an optimal gold nanoparticle size (60 nm). A detection limit of 5-8 ng/mL, a sensitivity of 0.6-0.8 (pg/mL)−1 and a dynamic range of 3 orders of magnitude were achieved without any further amplification using the detection of prostate specific antigen in serum as a model system. The proposed assay has the ability to be easily implemented within a microfluidic device for point-of-care applications whereby the readout can be executed by a fast and cheap optical measurement.  相似文献   

3.
Teresa Łuczak 《Electroanalysis》2014,26(10):2152-2160
Gold and nanogold electrodes modified with self‐assembled layers composed of gold nanoparticles and organic sulfur compounds were applied for quantitative determination of dopamine and its biogenic interferents like: ascorbic and uric acids. For the novel sensor a linear relationship between the current response of dopamine at the potential of peak maximum and the concentration was found over a wide analyte concentration range in solution with a very good detection sensitivity and detection limit. It was proved that current peaks of dopamine and both ascorbic and uric acids were clearly separated from each other enabling selective detection of these compounds coexisting in a mixture in solution of pH 7.  相似文献   

4.
This work describes an improved seed-mediated growth approach for the direct attachment and growth of mono-dispersed gold nanoparticles on nanostructured indium tin oxide (ITO) surfaces. It was demonstrated that, when the seeding procedure of our previously reported seed-mediated growth process on an ITO surface was modified, the density of gold nanospheres directly grown on the surface could be highly improved, while the emergence of nanorods was restrained. By field emission scanning electron microscopy (FE-SEM) and cyclic voltammetry, the growth of gold nanoparticles with increasing growth time on the defect sites of nanostructured ITO surface was monitored. Using a [Fe(CN)6]3−/[Fe(CN)6]4− redox probe, the increasingly facile heterogeneous electron transfer kinetics resulting from the deposition and growth of gold nanoparticle arrays was observed. The as-prepared gold nanoparticle arrays exhibited high catalytic activity toward the electrooxidation of nitric oxide, which could provide electroanalytical application for nitric oxide sensing.  相似文献   

5.
Gold nanostructured screen‐printed carbon electrodes are demonstrated to be suitable transducers for the determination of lead using square‐wave voltammetry. Reproducible gold nanostructures have been obtained by direct electrochemical deposition. A calibration plot from 2.5 to 250 μg/L was obtained in acidic solutions of Pb(II) with a reproducibility of 4% (n=10). The detection limit was 0.09 μg/L of lead. The method is then applied to perform a blood lead analysis by adjusting square‐wave parameters in capillary or venous blood with a minimum sample pretreatment and excellent accuracy and reproducibility.  相似文献   

6.
This paper reports on the modification of gold electrodes with self‐assembled layers (SAMs) composed of meso‐2,3‐dimercaptosuccinic acid, cysteamine and gold nanoparticles, respectively and their application to quantitative determination of norepinephrine alone and in the presence of ascorbic and uric acids in solution at pH 7. The modification was carried out on two kinds of templates: a bare gold electrode (2D electrode) and a gold electrode coated in the first step with gold nanoparticles (3D electrode). Cyclic voltammograms reveal an enhancement of the norepinephrine electrooxidation in comparison to a bare, (non‐modified) gold electrode. The oxidation peaks for norepinephrine, ascorbic acid and uric acid have a peak‐to‐peak separation that enables their selective determination even in a complex mixture.  相似文献   

7.
Mono-/bi-layer Au nanoparticle films with large areas were prepared by the assembly of Au nanoparticles in aqueous colloid at toluene/water interfaces, which can be transferred onto the hydrophilic solid surface and adhere strongly to the substrate without any binding agent. The transferred Au nanoparticle films exhibited satisfactory catalytic performance for electro-oxidizing nitric oxide (NO) in solution, and had a low detection limit (2.7 × 10−8 mol/L), a rapid response time (less than 0.5 s) and a wide linear range (5.0 × 10−8–1.0 × 10−5 mol/L) for the detection of NO in solution. UV–vis spectra, cyclic voltammetry and chronoamperometry were conducted to characterize the prepared Au nanoparticle films.  相似文献   

8.
Electrochemical sensors based on chemical surface modification are very attractive because they combine high sensitivity of amperometry with new dimensions of selectivity and stability provided by the surface modifier. This review shows a few strategies employed to facilitate the detection, determination and monitoring of nitric oxide using polymer modified electrodes. Conducting and nonconducting polymer films and composite films are considered. The most significant achievements reached in this field, during the last decade, are critically reviewed. The collected data are also presented in three tables.  相似文献   

9.
In this work, an electrochemical DNA biosensor, based on a dual signal amplified strategy by employing a polyaniline film and gold nanoparticles as a sensor platform and enzyme‐linked as a label, for sensitive detection is presented. Firstly, polyaniline film and gold nanoparticles were progressively grown on graphite screen‐printed electrode surface via electropolymerization and electrochemical deposition, respectively. The sensor was characterized by scanning electron microscopy (SEM), cyclic voltammetry and impedance measurements. The polyaniline‐gold nanocomposite modified electrodes were firstly modified with a mixed monolayer of a 17‐mer thiol‐tethered DNA probe and a spacer thiol, 6‐mercapto‐1‐hexanol (MCH). An enzyme‐amplified detection scheme, based on the coupling of a streptavidin‐alkaline phosphatase conjugate and biotinylated target sequences was then applied. The enzyme catalyzed the hydrolysis of the electroinactive α‐naphthyl phosphate to α‐naphthol; this product is electroactive and has been detected by means of differential pulse voltammetry. In this way, the sensor coupled the unique electrical properties of polyaniline and gold nanoparticles (high surface area, fast heterogeneous electron transfer, chemical stability, and ease of miniaturisation) and enzymatic amplification. A linear response was obtained over a concentration range (0.2–10 nM). A detection limit of 0.1 nM was achieved.  相似文献   

10.
Three silylated γ-alkynylfurans were prepared and subjected to both gold and platinum catalysts. The TMS- and the TBDMS-substituted furans reacted. With AuCl3 and the binuclear [(Ph3PAu)2Cl][BF4] catalyst a hydroarylation of the alkyne was observed. Na[AuCl4] gave phenols as the product, but these were formed only after in situ desilylation of the starting material by the gold catalyst and thus the wrong isomer dominated. Only with PtCl2(MeCN)2 phenols with a silyl group were formed. The TBDPS-substituted furan failed to react. Two alkynylsilanes were synthesized, but they also failed to react.  相似文献   

11.
In this work, a sandwich-type electrochemical immunosensor for simultaneous sensitive detection of prostate specific antigen (PSA) and free prostate specific antigen (fPSA) is fabricated. Gold nanoparticles (AuNPs) modified Prussian blue and nickel hexacyanoferrates nanoparticles were firstly prepared, respectively, and then decorated onion-like mesoporous graphene sheets (denoted as Au@PBNPs/O-GS and Au@NiNPs/O-GS) as distinguishable signal tags to label different detection antibodies. Subsequently, streptavidin and biotinylated alkaline phosphatase (bio-AP) were employed to block the possible remaining active sites. With the employment of the as prepared nanohybrids, the dual catalysis amplification can be achieved by catalysis of the ascorbic acid 2-phosphate to in situ produce AA in the presence of bio-AP, and then AA was further catalyzed by Au@PBNPs/O-GS and Au@NiNPs/O-GS nanohybrids, respectively, to obtain the higher signal responses. The experiment results show that the linear range of the proposed immunosensor for simultaneous determination of fPSA is from 0.02 to 10 ng mL−1 with a detection limit of 6.7 pg mL−1 and PSA is from 0.01 to 50 ng mL−1 with a detection limit of 3.4 pg mL−1 (S/N = 3). Importantly, the proposed method offers promise for rapid, simple and cost-effective analysis of biological samples.  相似文献   

12.
金纳米粒子组装结构中的表面重组现象   总被引:1,自引:0,他引:1  
以纳米粒子为基本结构单元构筑的各种二维或三维超晶格结构受到了广泛的重视[1].人们的兴趣一方面来源于在纳米尺度上控制材料结构 ,另一方面则因为组织化的纳米材料或结构具有独特的性质 ,以期在非线性光学、纳米电子学等前沿领域得到应用[2].当前研究最多的结构形式是固体表面上的纳米粒子阵列或单层薄膜 ,通常是胶体粒子靠某种特殊相互作用吸附或沉积在固体表面上(亦称为“纳米粒子在表面上的组装[3]”) ,因此对纳米粒子及固体表面进行功能化的修饰 ,从而控制纳米粒子在表面上的排列和聚集状态 ,是制备这类复合结构的核心问…  相似文献   

13.
The potential ability of atomic force microscopy (AFM) as a quantitative bioanalysis tool is demonstrated by using gold nanoparticles as a size enhancer in a DNA hybridization reaction. Two sets of probe DNA were functionalized on gold nanoparticles and sandwich hybridization occurred between two probe DNAs and target DNA, resulting in aggregation of the nanoparticles. At high concentrations of target DNA in the range from 100 nM to 10 μM, the aggregation of gold nanoparticles was determined by monitoring the color change with UV-vis spectroscopy. The absorption spectra broadened after the exposure of DNA–gold nanoparticles to target DNA and a new absorption band at wavelengths >600 nm was observed. However, no differences were observed in the absorption spectra of the gold nanoparticles at low concentrations of target DNA (10 pM to 10 nM) due to insufficient aggregation. AFM was used as a biosensing tool over this range of target DNA concentrations in order to monitor the aggregation of gold nanoparticles and to quantify the concentration of target DNA. Based on the AFM images, we successfully evaluated particle number and size at low concentrations of target DNA. The calibration curve obtained when mean particle aggregate diameter was plotted against concentration of target DNA showed good linearity over the range 10 pM to 10 nM, the working range for quantitative target DNA analysis. This AFM-based DNA detection technique was three orders of magnitude more sensitive than a DNA detection method based on UV-vis spectroscopy.  相似文献   

14.
In a preliminary study aimed at developing strategies for the simultaneous detection of various biologically important molecules, a procedure is described that allows the electrochemical detection of nitric oxide (NO) released by a population of human umbilical vein endothelial cells (HUVEC) by using an array of electrodes comprising three individually addressable electrodes. Each electrode in the array was modified with a different NO-sensitive electrocatalyst, thereby demonstrating the possibility of modifying the individual electrodes in an array with different sensing chemistries. This study opens a doorway to the development of arrays of electrodes for the simultaneous detection of multiple analytes in a complex environment by suitably tailoring the sensitivity and selectivity of each electrode in the array to a specific analyte in the test medium.  相似文献   

15.
A new technique that uses gold immunochromatographic strips enhances the detection sensitivity by inducing the clustering of additional gold nanoparticles (AuNPs) around the immunogold particles immobilized on nitrocellulose strips. The additional AuNPs provide an intense signal that can be detected by the naked eye. The AuNPs were synthesized and conjugated to monoclonal antibodies using self-assembly. Other antibodies were immobilized in a defined detection zone on the nitrocellulose membrane. The detection principle is based on a “sandwich” immunoreaction, where gold-labeled antibodies serve as signal vehicles. To improve the sensitivity of the strips, we use a mixture of 1% HAuCl4 and 10 mmol L−1 NH2OH·HCl to “enlarge” the gold nanoparticles. The detecting limits of Avian influenza virus (AIV) and Newcastle disease virus (NDV) are significantly increased. Compared with commercial test strips, this method is 100-fold more sensitive. This method is easy to perform and can be carried out on-site in test laboratories.  相似文献   

16.
Herein, we describe a new method for the detection of hydrogen peroxide (H2O2) in food by using an electrochemical biosensor. Initially, ultrafine gold nanoparticles dispersed on graphene oxide (AuNP‐GO) were synthesized by the redox reaction between AuCl4? and GO, and thionine‐catalase conjugates were then assembled onto the AuNP‐GO surface on a glassy carbon electrode. With the aid of the AuNP‐GO, the as‐prepared biosensor exhibited good electrocatalytic efficiency toward the reduction of H2O2 in pH 5.8 acetic acid buffer. Under optimal conditions, the dynamic responses of the biosensor toward H2O2 were achieved in the range from 0.1 µM to 2.3 mM, and the detection limit (LOD) was 0.01 µM at 3sB. The Michaelis–Menten constant was measured to be 0.98 mM. In addition, the repeatability, reproducibility, selectivity and stability of the biosensor were investigated and evaluated in detail. Finally, the method was applied for sensing H2O2 in spiked or naturally contaminated samples including sterilized milk, apple juices, watermelon juice, coconut milk, and mango juice, receiving good correspondence with the results from the permanganate titration method. The disposable biosensor could offer a great potential for rapid, cost‐effective and on‐field analysis of H2O2 in foodstuff.  相似文献   

17.
In this work a gold electrode modified with self‐assembled layers (SAMs) composed with organic S‐containing compound and gold nanoparticles was prepared. The electrode with SAMs endowed with gold nanoparticles gave the high catalytic effect for ethylene glycol (EG) electrooxidation in solution at pH 7. For this novel sensor a linear relationship between the current response of EG at the potential of peak maximum (jp) and the concentration of this compound in solution (cEG) was found over the range 0.1 µM to 0.7 M with the detection sensitivity jp/cEG equal to about 5 A cm?2 mol?1 dm3 (at v=0.1 V s?1) and the detection limit of 0.046 µM.  相似文献   

18.
《Electroanalysis》2017,29(5):1400-1409
Gold nanoparticles (AuNPs) and reduced graphene oxide (RGO) composite modified carbon paste electrode (CPE) was prepared by electrodepositing AuNPs over the reduced graphene oxide (RGO) modified carbon paste electrode. The composite material was characterised using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and atomic force microscopy (AFM) techniques. The nano composite modified electrode was applied for the determination of total As and for the inorganic speciation of As(III) and As(V) in environmental samples. The linear dynamic range was obtained for the determination of As(III) in the present method from 1μgL−1 to 20 μgL−1 and the limit of detection(LOD) in the standard solution was found to be 0.13 μgL−1 for the 300 sec deposition time in 10 mL supporting electrolyte solution. This method was applied for the determination of As (III) in water and soil samples. The results were agreed well with the result obtained from the hydride generation atomic absorption spectrometry.  相似文献   

19.
In this paper, the electrochemical behaviors of a single gold nanoparticle attached on a nanometer sized electrode have been studied. The single nanoparticle was characterized by using electrochemical methods. Since there is only one nanoparticle on the electrode, unarguable information for that sized particle could be obtained. Our preliminary results show that it becomes more difficult to oxidize gold nanoparticle or reduce gold nanoparticle oxide as the radius of the particle becomes smaller. Also, the peak potential of the reduction of gold nanoparticle oxide is proportional to the reciprocal of the radius of the particle.  相似文献   

20.
A novel nonenzymatic glucose sensor was developed based on well‐dispersed gold nanoparticles, which were in situ grown under direction of protein on a reduced graphene oxide modified electrode. This electrode exhibited high electrocatalytic activity towards glucose oxidation without use of any enzyme or mediator. In application for the amperometric detection of glucose, a wide linear range of 0.02–16.6 mM, low detection limit of 5 µM and good selectivity were obtained. The attractive analytical performances of the proposed glucose sensor, coupled with the facile preparation method, provide a promising electrochemical platform for the development of effective nonenzymatic sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号