首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
碳纳米管的羟甲基化及其马来酸酐接枝研究   总被引:1,自引:0,他引:1  
利用甲醛的亲电性能, 对化学气相沉积法(CVD)制备的多壁碳纳米管(MWCNTs)进行羟甲基化, 并在此基础上酯化接枝马来酸酐, 运用透射电子显微镜(TEM)、红外光谱和Zeta电位仪表征了改性后的MWCNTs的表面结构. TEM结果显示, 酯化后的MWCNTs明显增粗, 说明表面已附有物质. 红外结果表明, 羟甲基后的MWCNTs的表面有了羟基和亚甲基, 而马来酸酐酯化接枝后的MWCNTs有亚甲基和酯基官能团. 光学图像分析表明, 经甲醛处理后的MWCNTs在水溶液中的分散性明显提高, 而马来酸酐酯化接枝后的MWCNTs在二甲苯中的分散性明显增强. Zeta电位的测试结果表明, 甲醛处理过的MWCNTs颗粒在水中, 负电荷增多, 增强了其在悬浮液在溶液中的稳定性.  相似文献   

2.
The hyperbranched polyester (BoltornTM H20) was modified by maleic anhydride and then polystyrene (H20-MAh-PSt) to form amphiphilic micelles in water. The single-wall and multi-wall carbon nanotubes (SWCNTs and MWCNTs, respectively) were encapsulated in the formed micelles through non-covalent interactions. The formed structures were confirmed by FTIR, NMR, GPC, and XPS analysis. The dispersion and aggregation behaviors were observed by TEM and UV-vis and Raman spectroscopic analysis. The results showed that the dispersion performance of the obtained micelle-encapsulated carbon nanotubes in water was greatly improved compared to the pure carbon nanotubes. From the TEM observation, the individual SWCNT structure and the uniform polymer coating around the surface of SWCNT were seen after crosslinking. The Raman spectroscopic measurements also demonstrated that for the crosslinked samples, no effect occurred associated with concentration-dependent carbon nanotube aggregation.  相似文献   

3.
In this work, maleic anhydride grafted styrene–ethylene–butadiene–styrene copolymer (SEBS‐g‐MA) and carbon nanotubes (CNTs) were introduced into the immiscible polypropylene/polystyrene (PP/PS) blend. Among the three polymer components, SEBS‐g‐MA has the strongest affinity to CNTs; thus, it exhibits dual effects to adjust the phase morphology of the blends and the dispersion state of CNTs in the blends. The experimental observations obtained from morphology characterizations using scanning electron microscope and transmission electron microscope confirm the selective localization of CNTs at the interface of the immiscible PP/PS blend. As a consequence, largely decreased percolation threshold is achieved when most of CNTs are selectively localized at the interface region between PP and PS. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
In this work, the effects of blend ratio and mixing time on the migration of multi-walled carbon nanotubes (MWCNTs) within poly(vinylidene fluoride) (PVDF)/polyethylene (PE) blends are studied. A novel two-step mixing approach was used to pre-localize MWCNTs within the PE phase, and subsequently allow them to migrate into the thermodynamically favored PVDF phase. Light microscopy images confirm that MWCNTs migrate from PE to PVDF, and transmission electron microscopy (TEM) images show individual MWCNTs migrating fully into PVDF, while agglomerates remained trapped at the PVDF/PE interface. PVDF:PE 50:50 and 20:80 polymer blend nanocomposites with 2 vol% MWCNTs exhibit exceptional electromagnetic interference shielding effectiveness (EMI SE) at 10 min of mixing (13 and 16 dB, respectively-at a thickness of 0.45 mm), when compared to 30 s of mixing (11 and 12 dB, respectively), suggesting the formation of more interconnected MWCNT networks over time. TEM images show that these improved microstructures are concentrated on the PE side of the PVDF/PE interface. A modified version of the “Slim-Fast-Mechanism” is proposed to explain the migration behavior of MWCNTs within the PVDF/PE blend. In this theory, MWCNTs approaching perpendicular to the interface penetrate the PVDF/PE interface, while those approaching in parallel or as MWCNT agglomerates remain trapped. Trapped MWCNTs act as barriers to additional MWCNTs, regardless of geometry. This mechanism is verified via TEM and scanning electron microscopy and suggests the feasibility of localizing MWCNTs at the interface of PVDF/PE blends.  相似文献   

5.
The maleic anhydride‐grafted multiwalled carbon nanotubes (MWCNTs‐g‐MA) have been introduced into polypropylene/ethylene‐co‐vinyl acetate (PP/EVA) blend. To clearly describe the effects of MWCNTs‐g‐MA on the morphology and mechanical properties of PP/EVA blends, the selective distribution of MWCNTs‐g‐MA in the blends is realized through different sample preparation methods, namely, MWCNTs‐g‐MA disperse in EVA phase and MWCNTs‐g‐MA disperse in PP matrix. The results show that the distribution of MWCNTs‐g‐MA has an important effect on the final morphology of EVA and the crystallization structure of PP matrix. Compared with PP/EVA binary blend, distribution of MWCNTs‐g‐MA in PP matrix induces the aggregation of EVA phase at high EVA content and the decrease of spherulite diameters of PP matrix simultaneously. However, when MWCNTs‐g‐MA are dispersed in the EVA phase, they induce more homogeneous distribution of EVA, and the crystallization behavior of PP is slightly affected by MWCNTs‐g‐MA. The corresponding mechanical properties including impact strength and tensile strength are tested and analyzed in the work. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1481–1491, 2009  相似文献   

6.
The influence of multiwalled carbon nanotubes (MWCNTs) on phase morphology, lamellar structure, thermal stability, melting behaviour and isothermal crystallisation kinetics of polycarbonate/polypropylene (PC/PP) blend nanocomposites has been investigated. Both neat blends and PC/PP (60/40)/MWCNT nanocomposites were prepared by melt mixing method. Morphological analyses were performed by high-resolution X-ray micro-computed tomography and scanning electron microscopy. The co-continuous morphology of the blend was retained irrespective of MWCNT loading. In addition, a substantial refinement in the co-continuous structure was observed. Wide angle and small angle X-ray scattering studies were used to analyse the structural properties of the blend nanocomposites. The addition of MWCNT increases the long period of polypropylene. The influence of addition of MWCNT on the crystallisation temperature and equilibrium melting temperature (Tm°) of polypropylene was followed. The MWCNTs promote crystallisation rate of polypropylene in the blend nanocomposites.  相似文献   

7.
A small amount of cyano groups in poly(styrene-co-acrylonitrile) (SAN) was converted to oxazoline groups through reaction with 2-aminoethanol. Reactive melt blending of oxazoline-containing SAN and acidified multiwalled carbon nanotubes (MWCNTs) leads to the grafting of polymer chains onto MWCNTs arising from reactions between oxazoline and carboxylic acid groups. Spectroscopic, thermal and microscopic techniques confirmed the successful grafting of SAN onto MWCNTs. This method is comparatively simpler and greener than a previously reported method, and can be adopted to graft other acrylonitrile-containing polymers onto MWCNTs.  相似文献   

8.
The morphology of blends of styrenic polymers in a matrix of 75% Nylon-6 prepared in a Brabender Plasti-Corder was examined by scanning electron microscopy. Styrene/acrylonitrile copolymers (SAN) form smaller particles as the AN level increases owing to the corresponding decrease in the SAN–polyamide interfacial tension. Various styrenic polymers containing functional groups, maleic anhydride or oxazoline type, that can react with Nylon-6 during melt processing were added to the SAN phase which also led to a decrease in the particle size owing to the graft copolymer formed in situ. The effects of functional group type, amount of functional groups per chain, amount of functional polymer added, and the miscibility of the styrene/maleic anhydride (SMA) and SAN copolymers on the morphology of the styrenic phase in the Nylon-6 matrix are described. © 1992 John Wiley & Sons, Inc.  相似文献   

9.
This article examines the effects of dispersed phase concentration, processing apparatus, viscosity ratio, and interfacial compatibilization using an SAN–amine compatibilizer on the morphology of blends of bisphenol A–polycarbonate (PC) with styrene–acrylonitrile (SAN) copolymers. For uncompatibilized blends, the dispersed phase particle size increased significantly with SAN concentration, and was found to exhibit a minimum at a viscosity ratio of approximately 0.35 for a fixed concentration of 30% SAN in the blend. Although the morphology of uncompatibilized PC/SAN blends mixed in a Brabender mixer, single‐ and twin‐screw extruders were quite similar, the twin‐screw extruder produced significantly finer morphologies in blends containing SAN–amine. The average particle size for blends compatibilized with the SAN–amine polymer was approximately half that of uncompatibilized blends and was relatively independent of viscosity ratio and dispersed phase composition. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 71–82, 1999  相似文献   

10.
Multiwalled carbon nanotubes (MWNTs) have been introduced into blends of polycarbonate (PC) and poly(styrene‐acrylonitrile) (SAN) by melt mixing in a microcompounder. Co‐continuous blends are prepared by either pre‐compounding low amounts of nanotubes into PC or SAN or by mixing all three components together. Interestingly, in all blends, regardless of the way of introducing the nanotubes, the MWNTs were exclusively located within the PC phase, which resulted in much lower electrical resistivities as compared to PC or SAN composites with the same MWNT content. The migration of MWNTs from the SAN phase into the PC phase during common mixing is explained by interfacial effects.

  相似文献   


11.
Electrical and melt rheological properties of melt‐mixed polycarbonate (PC) and co‐continuous PC/poly(styrene–acrylonitrile) (SAN) blends with carbon nanotubes (CNTs) are investigated. Using two sets of mixing parameters, different states of filler dispersion are obtained. With increasing CNT dispersion, an increase in electrical resistivity near the percolation threshold of PC–CNT composites and (PC + CNT)/SAN blends is observed. This suggests that the higher mixing energies required for better dispersion also result in a more severe reduction of the CNT aspect ratio; this effect was proven by CNT length measurements. Melt rheological studies show higher reinforcing effects for composites with worse dispersion. The Eilers equation, describing the melt viscosity as function of filler content, was used to fit the data and to obtain information about an apparent aspect ratio change, which was in accordance with measured CNT length reduction. Such fitting could be also transferred to the blends and serves for a qualitatively based discussion. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 79–88  相似文献   

12.
Electrically conductive thermoplastic vulcanizates(TPVs) filled by multi-walled carbon nanotubes(MWCNTs) are prepared by a simple one-step melt mixing process,based on linear low density polyethylene(LLDPE) and ultrafme full-vulcanized rubber particles(UFRP).An ideal morphology with controlled localization of MWCNTs in continuous LLDPE matrix and appropriate size of finely-dispersed UFRP can be achieved at the same time.The controlled localization of MWCNTs in the continuous phase facilitates the formation of conductive pathway,and thus the volume resistivity of the as-prepared LLDPE/UFRP/MWCNTs thermoplastic vulcanizates is significantly decreased.The results show that both the blend ratio of LLDPE/UFRP and the loading of MWCNTs have remarkable effect on the volume resistivity.Significantly, the electrically conductive TPVs exhibit good mechanical properties duo to the fine dispersion of UFRP in LLDPE.The added MWCNTs are capable of imparting reinforcement effects to thermoplastic vulcanizates with just a slight loss of stretchability and elasticity.  相似文献   

13.
Binary blends of poly(2,6–dimethyl–1,4–phenylene oxide) (PPE) with various styrene copolymers were investigated. Poly(styrene–co–acrylonitrile) (SAN), poly[styrene–co–(methyl methacrylate)] (SMMA), poly[styrene–co–(acrylic acid)] (SAA) and poly[styrene–co–(maleic anhydride)] (SMA) are only miscible with PPE when the amount of comonomer is rather small. From calculated binary interaction densities it can be concluded that the strong repulsion between PPE and comonomer limits miscibility. In blends of PPE with SAN, as well as with ABS, the inter-facial tension between the blend components is significantly reduced upon addition of polystyrene–block–poly–(methyl methacrylate) diblock copolymers (PS–b–PMMA) and polystyrene–block–poly (ethylene–co–butylene)–block–poly–(methyl methacrylate) triblock copolymers (PS–b–PEB–b–PMMA). They show a profound influence on morphology, phase adhesion and mechanical blend properties.  相似文献   

14.
The compatibilization effect of linear low‐density polyethylene‐grafted maleic anhydride (LLDPEgMA) and high‐density polyethylene‐grafted maleic anhydride (HDPEgMA) on high‐density polyethylene (HDPE)/polyamide 6 (Nylon 6) blend system is investigated. The morphology of 45 wt %/55 wt % polyethylene/Nylon 6 blends with three compatibilizer compositions (5 wt %, 10 wt %, and 15 wt %) are characterized by atomic force microscopic (AFM) phase imaging. The blend with 5 wt % LLDPEgMA demonstrates a Nylon 6 continuous, HDPE dispersed morphology. Increased amount of LLDPEgMA leads to sharp transition in morphology to HDPE continuous, Nylon 6 dispersed morphology. Whereas, increasing HDPEgMA concentration in the same blends results in gradual morphology transition from Nylon 6 continuous to co‐continuous morphology. The mechanical properties, oxygen permeability, and water vapor permeability are measured on the blends which confirm the morphology and indicate that HDPEgMA is a better compatibilizer than LLDPEgMA for the HDPE/Nylon 6 blend system. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 281–290  相似文献   

15.
Poly(butylene terephthalate) (PBT)/styrene‐acrylonitrile copolymer (SAN) blends were investigated with respect to their phase morphology. The SAN component was kept as dispersed phase and PBT as matrix phase and the PBT/SAN viscosity ratio was changed by using different PBT molecular weights. PBT/SAN blends were also compatibilized by adding methyl methacrylate‐co‐glycidyl methacrylate‐co‐ethyl acrylate terpolymer, MGE, which is an in situ reactive compatibilizer for melt blending. In noncompatibilized blends, the dispersed phase particle size increased with SAN concentration due to coalescence effects. Static coalescence experiments showed evidence of greater coalescence in blends with higher viscosity ratios. For noncompatibilized PBT/SAN/MGE blends with high molecular weight PBT as matrix phase, the average particle size of SAN phase does not depend on the SAN concentration in the blends. However noncompatibilized blends with low molecular weight PBT showed a significant increase in SAN particle size with the SAN concentration. The effect of MGE epoxy content and MGE molecular weight on the morphology of the PBT/SAN blend was also investigated. As the MGE epoxy content increased, the average particle size of SAN initially decreased with both high and low molecular weight PBT phase, thereafter leveling off with a critical content of epoxy groups in the blend. This critical content was higher in the blends containing low molecular weight PBT than in those with high molecular weight PBT. At a fixed MGE epoxy content, a decrease in MGE molecular weight yielded PBT/SAN blends with dispersed nanoparticles with an average size of about 40 nm. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

16.
研究了马来酸酐接枝的聚乙烯辛烯弹性体 /半结晶性塑料共混物 (TPEg)对热塑性共聚聚酯(PETG) /聚乙烯辛烯弹性体 (TPE)共混体系增容增韧作用的影响 .马来酸酐接枝物显著地改善了PETG与TPE之间的相容性 ,导致TPE分散相颗粒细化 ,并促使分散相颗粒面间距等于甚至小于实现脆韧转变所需的临界面间距 .在固定PETG基体含量为 85wt %的前提下 ,当TPEg在 15 %分散相中的含量由 2 0 %增加到30 %时 ,即TPEg在共混体系中的含量由 3 %增加到 4 5 %时 ,共混体系出现了由脆性到韧性的转变 ,冲击强度急剧升高  相似文献   

17.
ABS/PVC blends were prepared over a range of compositions by mixing PVC, SAN, and PB‐g‐SAN. All samples were designed to have a constant rubber level of 12 wt % and the ratio of total‐SAN to PVC in the matrix of the blends varied from 70.5/17.5 to 18/80. Transmission electron microscope and scanning electron microscope have been used to study deformation mechanisms in the ABS/PVC blends. Several different types of microscopic deformation mechanisms, depending on the composition of blends, were observed for the ABS/PVC blends. When the blend is a SAN‐rich system, the main deformation mechanisms were crazing of the matrix. When the blend is a PVC‐rich system, crazing could no longer be detected, while shear yielding of the matrix and cavitation of the rubber particles were the main mechanisms of deformation. When the composition of blend is in the intermediate state, both crazing and shear yielding of matrix were observed. This suggests that there is a transition of deformation mechanism in ABS/PVC blends with the change in composition, which is from crazing to shear deformation. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 687–695, 2006  相似文献   

18.
A new compatibilizer, poly(vinyl benzyloxy ethyl naphthalene)‐graft‐poly(methyl methacrylate), for poly(styrene‐co‐acrylonirile) (SAN)/multi‐walled carbon nanotubes (MWCNTs) composites was synthesized. It has been identified that naphthalene unit in backbone of compatibilizer interacts with MWCNTs via π? π interaction and that the PMMA graft of the compatibilizer is miscible with the SAN matrix. When a small amount of compatibilizer was added to SAN/MWCNT composites, MWCNTs were more homogeneously dispersed in SAN matrix than the case without compatibilizer, indicating that the compatibilizer improves the compatibility between SAN and MWCNTs. As a consequence, mechanical and electrical properties of the composites with compatibilizer were largely improved as compared with those of composites without compatibilizer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4184–4191, 2010  相似文献   

19.
Miscibility and phase separation in SAN/PMMA blends have been investigated using DSC, IR spectroscopy and positron lifetime spectroscopy (PLS). Single broad glass transition observed throughout the blend compositions, may be due to overlap of two glass transitions. IR measurements clearly indicate the absence of strong interactions. This supports miscibility is due to intramolecular repulsive forces in the SAN component. On the other hand, free volume data show negative deviation from linear additivity indicating the blends are miscible. The interchain interaction parameter β exhibits a complex behavior and the extent of miscibility is not revealed. Following Wolf’s treatment, we have evaluated the geometry factor γ and hydrodynamic interaction parameter α and found α is a suitable parameter in predicting the miscibility window. The cloud points in SAN/PMMA blends increase with decreasing PMMA content. The change in free volume size correlates well with the observed change in cloud point.  相似文献   

20.
王国建  屈泽华  郭建龙  李岩  刘琳 《化学学报》2006,64(24):2505-2508
利用羟基碳纳米管上的羟基与马来酸酐之间的简单反应, 在碳纳米管上引入双键, 进一步引发苯乙烯聚合, 在碳纳米管表面接枝苯乙烯马来酸酐共聚物, 同时采用羟基碳纳米管与苯乙烯马来酸酐共聚物直接反应也在碳纳米管的表面引入了苯乙烯马来酸酐共聚物. 经IR, Raman, TG和TEM测定, 证明了碳纳米管与苯乙烯马来酸酐共聚物之间为化学键连接关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号