首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
近几年,应用碳材料负极和有机电解液的液态锂离子电池(LIBs)的弊端日益凸显,电解液泄漏和过热燃烧等安全事故频发。另外,传统的LIBs也无法满足当今社会对高能量密度电池的需求。由于上述LIBs存在的诸多缺点,市场急需开发兼顾高能量密度与高安全性能的新型电池,现已发现可通过引入固态电解质的途径来实现。固态锂电池(SSLBs)相较于传统的LIBs,具有较高的能量密度、较宽的工作温度范围和更高的安全性。其中,固态电解质作为固态电池的重要元件之一,对电池性能的影响至关重要。石榴石Li7La3Zr2O12凭借其高锂离子电导率(1×10-4~1×10-3 S/cm)、宽电化学窗口(9 V)以及对锂负极的高稳定性等优点,在众多固态电解质中脱颖而出。本综述就提高石榴石基电解质锂离子电导率的研究予以总结:首先,介绍了Li7La3Zr2O12晶体结构并分析了结构与电导率之间的关系;然后,综...  相似文献   

2.
石榴石型Li7La3Zr2O12(LLZO)离子导电性高,在全固态锂离子电池中具有潜在的应用价值。但目前报道的LLZO制备工艺烧结温度范围宽,稳定性差,不利于宏量制备。本文以烧结产物物相结构和结晶度为考察指标,系统研究了锂源及用量、烧结温度、烧结时间等因素对LLZO成相的影响。结果表明,当以分解温度较低的锂盐(LiNO3)为原料时,在800℃下得到四方相LLZO,900℃时呈立方相LLZO;当以分解温度较高的锂盐(Li2CO3)为原料时,900℃才能形成四方相LLZO。烧结时间的延长和温度升高均会导致锂的挥发损失,影响LLZO物相的形成。通过增加锂盐用量、改变烧结前驱体聚集特性与烧结时间可抑制锂的挥发。当以过量10%的Li2CO3为原料时,900℃烧结6h可稳定的得到立方相LLZO。该研究较为系统地分析了制备工艺对LLZO成相的影响,可为LLZO宏量稳定制备提供借鉴。  相似文献   

3.
通过牺牲模板法制备了一种三维框架Li6.28La3Zr2Al0.24O12(3D-LLZAO)无机电解质,并将其用于构建聚氧化乙烯(PEO)基复合固态电解质膜.通过扫描电子显微镜(SEM)、X射线衍射(XRD)等物理表征及电化学阻抗谱(EIS)、线性扫描伏安(LSV)和充放电循环等电化学测试方法研究了PEO基固态电解质的性能.结果表明加入10%(w) 3D-LLZAO的PEO基复合固态电解质CPE-10具有较小的体电阻、较宽的电化学稳定窗口.复合电解质CPE-10室温下离子电导率为1.58×10-4 S·cm-1,锂离子迁移数为0.26.利用复合固态电解质组装的锂锂对称电池可在室温下0.05 mA·cm-2的电流密度条件下稳定循环1600 h.以磷酸铁锂(LFP)为正极组装的LFP/CPE-10/Li电池在0.5 C倍率下初始放电比容量为155.6m Ah·g-1,循环100次后容量保持率为86%.  相似文献   

4.
采用溶胶-凝胶法合成SiO2含量小于50×10-6的Ce0.8Nd0.2O1.9(NDC)陶瓷粉体,并将少量Fe2O3加入到NDC体系中,讨论Fe2O3的掺杂对其微观结构及电性能的影响。通过X射线衍射(XRD)等手段对氧化物进行结构表征,交流阻抗谱(AC)测试电性能。研究表明,Fe2O3的掺杂显著提高NDC陶瓷材料的致密度;相比于NDC而言,加入Fe2O3后材料的晶界电导率提高约12倍,总电导率提高约6倍。  相似文献   

5.
全固态锂二次电池兼具高能量密度和高安全性特点.高陶瓷含量的陶瓷-聚合物复合固态电解质综合了聚合物电解质的柔韧性和陶瓷电解质的高机械强度与高锂离子迁移数等优点,有望优先其他形式固态电解质应用于全固态锂二次电池.本文在简要介绍固态复合电解质后,重点从复合电解质膜的性能特点与制备方法、陶瓷-聚合物界面相互作用以及由此导致的新...  相似文献   

6.
和传统电解液相比,固态电解质热稳定性好,电位窗高,力学性能好且对环境友好;更重要地,由固态电解质组成的锂离子电池能量密度比传统锂离子电池更高,因而成为当前研究的热点。综述了几种主要固态电解质,包括无机固体电解质、固态聚合物电解质、凝胶电解质及复合型电解质的优势、研究进展以及面临的问题,并展望了未来固态电解质的发展趋势。  相似文献   

7.
采用溶液浇注法制备以Li_(6.4)La_3Zr_(1.4)Ta_(0.6)O_(12)(LLZTO)为填料、聚氧化乙烯(PEO)与聚碳酸亚丙酯(PPC)共混的固态复合电解质膜,探讨了LLZTO含量和PPC/PEO比例对复合固态电解质离子电导率的影响。研究发现,当LLZTO含量为30%(w/w)及PPC/PEO质量比为1∶1时,固态复合电解质室温离子电导率最高,达到1.14×10~(-4)S·cm~(-1)。LLZTO和PPC的加入,降低了PEO基电解质的结晶性,提高了离子电导率、电化学稳定窗口(4.7 V)和锂离子迁移数(0.25),并改善了电解质与金属锂的化学稳定性。该固态复合电解质与LiFePO_4/Li组装固态锂电池,室温下在0.1C循环70次后容量保持率82%,60℃下0.1C循环100次后容量保持率79%,0.5C和1C倍率下放电比容量仍能达到120.7和112.6 mAh·g~(-1)。  相似文献   

8.
全固态锂离子电池由于具有安全性高、能量密度高等优势,已成为未来锂离子电池发展的必经之路.作为全固态锂离子电池的核心部件,聚合物/无机复合固态电解质同时拥有无机固态电解质和固态聚合物电解质的许多优异性能,但其也面临着诸多挑战,包括室温离子电导率低于10-3S/cm和界面阻抗大等.本文综述了聚合物/无机复合固态电解质的聚合...  相似文献   

9.
采用传统熔体冷却法制备了Li3-xAl2-xGex(PO4)3(x=1.1~1.9)体系玻璃,并通过热处理工艺获得了高电导率的微晶玻璃。通过XRD、TEM和交流阻抗等测试方法,研究了该系微晶玻璃的物相组成、微观形貌和锂离子电导率。结果表明:该系统微晶玻璃析出导电主晶相为LiGe2(PO4)3,杂质相为AlPO4和GeO2。当x=1.5时,由于导电主晶相LiGe2(PO4)3晶粒充分长大、分布均匀,所制备微晶玻璃的室温锂离子电导率最高(5.72×10-4 S.cm-1),可以满足全固态锂离子电池对电解质高室温电导率的要求。  相似文献   

10.
固态电解质是固态电池中的关键材料,开发具有高离子电导率、高化学/电化学稳定性、电极兼容性良好的固态电解质正成为研究热点。硫化物固态电解质相较其它固态电解质具有更高的离子电导率和良好的机械加工性能等优势,是最有前景实现实用化的固态电解质之一。在众多硫化物固态电解质中,Li7P3S11因其高的离子电导率和较低的原料成本而极具研究意义。本文首先介绍了Li7P3S11电解质的结构、Li+传导机理及合成路径;其次,针对该电解质的电导率提高、空气/水稳定性提升、固固界面稳定性及电解质自身稳定性改善等问题,综述了目前常用的改性策略研究;再次,总结了基于Li7P3S11电解质的全固态锂离子电池和全固态锂硫电池的构筑;最后,本文分析了Li7P3S11电解质的研究和应用面临的挑战,并指出该电解质未来发展的趋势。  相似文献   

11.
液态锂离子电池由于采用易泄露、易挥发、易燃烧的碳酸酯有机溶剂,在高温或极端条件下使用时,存在极大的安全隐患.使用固态电解质替代液态电解液,可以从根本上避免此类安全问题的发生,与此同时还可以大幅度提升固态锂电池的能量密度.固态电解质又分为无机固态电解质和聚合物固态电解质2大类.无机固态电解质能够在宽的温度范围内保持化学稳定性,并且电化学窗口较宽,机械强度更高,室温离子电导率较高,但脆性较大,柔韧性差,制备工艺复杂,成本较高.聚合物固态电解质,室温离子电导率偏低,难以满足室温锂离子电池的应用,但其加工成型容易,形状可变.比较而言,固态聚合物电解质,更适宜大规模生产,离产业化相对更近.固态聚合物电解质中研究较多的是聚醚基固态聚合物电解质(如聚环氧乙烷和聚环氧丙烷),但其缺点是室温离子电导率低,需要对其改性或进一步开发综合性能更加优异的其他固态聚合物电解质.聚碳酸酯基固态聚合物电解质由于其特殊的分子结构(含有强极性碳酸酯基团)以及高介电常数,可以有效减弱阴阳离子间的相互作用,提高载流子数量,从而提高离子电导率,因此被认为是一类非常有前途的固态聚合物电解质体系.基于此,本文重点综述了最近研究热点的聚碳酸酯基固态聚合物电解质,包括聚(三亚甲基碳酸酯)体系、聚(碳酸丙烯酯)体系、聚(碳酸乙烯酯)体系和聚(碳酸亚乙烯酯)体系等,并详细阐述了上述每种聚碳酸酯基固态聚合物电解质的制备、电化学性能、优缺点及改性手段,归纳出其离子配位-解配位过程和离子扩散机制,还对聚碳酸酯基固态聚合物电解质的未来发展方向和研究趋势望进行了预测和展望.  相似文献   

12.
Ce0.8Gd0.2O1.9 ceramics were synthesized by sol-gel method and the effect of MoO3 addition on the sintering temperature, microstructure and electrical properties was examined. The structures and ionic conductivities were characterized by TG/DTA, XRD, field-emission scanning electron microscopy (FE-SEM) and electrochemical impedance spectroscopy (EIS). The results showed that Mo-doped ceramics exhibited viscous flow, which reduces friction of the particles, promots mass diffusivity of the matrix grain boundary mobility, and thus enhances further densification during subsequent sintering. The conductivities of grain boundary and grain interior increased with the decreasing of the grain boundary resistance. With Mo-dopant, the grain interior conductivity increased from 1.27×10-3 S·cm-1 to 5.46×10-3 S·cm-1, and the grain boundary conductivity increased from 1.02×10-3 S·cm-1 to 2.89×10-3 S·cm-1 at 600 ℃ for Ce0.8Gd0.2O1.9.  相似文献   

13.
采用溶胶-凝胶法合成高纯(<50 mg·kg-1 SiO2)Ce0.8Nd0.2O1.9(NDC)和SiO2含量为500 mg·kg-1的Ce0.8Nd0.2O1.9(NDCSi)体系,将1mol%MoO3分别加入到NDC和NDCSi体系,比较研究MoO3掺杂对体系微观结构和电性能的影响。通过X射线衍射(XRD)和场发射扫描电子显微镜(FE-SEM)对材料进行表征,交流阻抗(AC)分析仪测试材料的电阻。结果表明:MoO3和SiO2的加入均没有破坏体系的立方莹石结构;MoO3掺杂能提高NDC和NDCSi陶瓷材料的致密度,提高其晶界电导率和总电导率;MoO3掺入NDC体系具有烧结助剂的作用,掺入NDCSi体系既具有烧结助剂的作用,又具有晶界改善剂的作用。  相似文献   

14.
A precursor of Ce0.8Y0.2O1.9(YDC) solid electrolyte was synthesized by the gol-gel method. YDC and phosphates powders were prepared by mixing the YDC and phosphates according to different weight ratios. The mixtures of the YDC and binary phosphates were ground and sintered at 1 400 ℃. The proton conductivity in solid electrolyte of the sintered samples was examined using electrochemical methods at 400~800 ℃. Ammonia was synthesized from nitrogen and hydrogen at atmospheric pressure in the solid state proton conducting cell reactor. The optimal condition for the ammonia production was determined. The result indicated that composite electrolyte of 80wt% YDC: 20wt% binary phosphates as proton conductor could obtain the highest ionic conductivity and ammonia production rate among the four samples, the rate of evolution of ammonia was up to 9.5 × 10-9 mol·s-1·cm-2.  相似文献   

15.
K2FeO4-Zn碱性固态电解质电池电化学性能研究   总被引:2,自引:0,他引:2  
应用溶液铸膜法制备出了交联聚乙烯醇(PVA)/聚丙烯酸(PAA)-KOH-H2O复合碱性固态电解质膜, 其厚度为150 µm左右, SEM测试结果表明其表面呈均相的非晶态结构, 交流阻抗(EIS)测试表明室温离子电导率可达3.5×10-2 S&#8226; cm-1, 循环伏安(CV)测试表明其电化学稳定窗口为3.5 V左右, 将其应用于一次碱性K2FeO4-Zn电池, 通过研究固态电解质膜在不同浓度KOH碱液中预处理和其在不同放电倍率下的放电性能, 结果表明, 9 mol&#8226;L-1为最佳固态电解质膜预处理碱液浓度, 0.4 C为最佳放电倍率, 1.0 V以上容量最高可达222.6 mAh&#8226;g-1, 并表现出良好的放电平台特性.  相似文献   

16.
通过共沉淀法制备了Al2O3-CeO2复合材料,并将其作为电解质应用于半导体离子燃料电池(SIFC)。探究了Al2O3、CeO2物质的量之比不同的Al2O3-CeO2复合电解质对SIFC电化学性能的影响。采用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对材料进行了表征。其中,Al2O3、CeO2物质的量之比为1∶0.5的Al2O3-CeO2 (1∶0.5)电池获得了最佳性能,在550 ℃下,开路电压为1.099 V时最大功率密度为1 142 mW·cm-2。得益于复合电解质在测试气氛下两相间的界面效应,Al2O3-CeO2 (1∶0.5)电池在较低测试温度下取得了优异的混合离子传导和功率输出性能。  相似文献   

17.
通过共沉淀法制备了Al2O3-CeO2复合材料,并将其作为电解质应用于半导体离子燃料电池(SIFC)。探究了Al2O3、CeO2物质的量之比不同的Al2O3-CeO2复合电解质对SIFC电化学性能的影响。采用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对材料进行了表征。其中,Al2O3、CeO2物质的量之比为1:0.5的Al2O3-CeO2(1:0.5)电池获得了最佳性能,在550℃下,开路电压为1.099 V时最大功率密度为1 142 mW·cm-2。得益于复合电解质在测试气氛下两相间的界面效应,Al2O3-CeO2(1:0.5)电池在较低测试温度下取得了优异的混合离子传导和功率输出性能。  相似文献   

18.
过渡金属离子掺杂改性TiO2的光催化性能研究进展   总被引:44,自引:0,他引:44  
对近年来利用过渡金属离子掺杂改性TiO  相似文献   

19.
高分子固体电解质研究进展   总被引:4,自引:0,他引:4  
评述了高分子固体电解质(SPE)的形成、分类、应用及离子传输机理的研究,并结合有关SPE新材料制备、PEO/盐络合物晶体结构全测定、离子传输机理探索及电化学器件应用等方面的最新报道对SPE未来研究方向进行展望.全文引用84篇文献.  相似文献   

20.
Sm, Pr掺杂CeO2和CeMoO15基固体电解质的结构与性能   总被引:1,自引:0,他引:1  
采用溶胶凝胶法制备了Sm和Pr掺杂的CeO2和CeMoO15基固体电解质, 通过X射线衍射(XRD)、拉曼光谱(Raman)、场发射扫描电镜(FE-SEM)等手段对氧化物结构进行了分析, 用交流阻抗谱测试了其电性能, 并比较了不同基体及其掺杂体系的结构与电性能. 结果表明, Ce6MoO15基掺杂体系的导电性能高于CeO2基掺杂体系; 元素Mo的加入使Ce6MoO15基材料的晶粒尺寸增大, 晶界相成分减少, 材料的晶界电导率增加, 600 ℃以下材料导电性能明显提高; Pr的掺入减小了材料的晶粒尺寸, 提高了材料的晶界电导率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号