首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents response surface methodology (RSM) as an efficient approach for modeling and optimizing TiO2 nanoparticles preparation via co-precipitation for dye-sensitized solar cell (DSSC) perfor- mance. Titanium (IV) bis-(acetylacetonate) di-isopropoxide (DIPBAT), isopropanol and water were used as precursor, solvent and co-solvent, respectively. Molar ratio of water, aging temperature and calcina- tion temperature as preparation factors with main and interaction effects on particle characteristics and performances were investigated, Particle characteristics in terms of primary and secondary sizes, crys- tal orientation and morphology were determined by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). Band gap energy and power conversion efficiency of DSSCs were used for perfor- mance studies. According to analysis of variance (ANOVA) in response surface methodology (RSM), all three independent parameters were statistically significant and the final model was accurate. The model predicted maximum power conversion efficiency (0.14%) under the optimal condition of molar ratio of DIPBAT-to-isopropanol-to-water of 1 : 10:500, aging temperature of 36 C and calcination temperature of 400 ℃. A second set of data was adopted to validate the model at optimal conditions and was found to be 0.14 ± 0.015%, which was very close to the predicted value. This study proves the reliability of the model in identi(ving the optimal condition for maximum performance.  相似文献   

2.
    
A 90° elbow equipped with guide vanes was developed with the intent of reducing elbow erosion. Numerical models were formed to predict the maximum erosion rate of elbow and Face-1, and the response surface methodology was used to study the relationship between the erosion rate and structural parameters of guide vane. A second-order response surface model was established to determine the relationship between R1 and variables, and a reduced cubic (RC) polynomial model was obtained to reveal the relationship between R2 and the three factors. The numerical results show that the low-speed region is expended and the maximum discrete particle matter (DPM) concentration is reduced after installing the guide vane. This internal component provides a shelter for the elbow from the direct impact of high-speed solids.  相似文献   

3.
    
Micro/nanocapsules of urea–formaldehyde resin loaded with linseed oil, which are a self-healing agent in glass flake epoxy anti-corrosion paint, were prepared using a combination of ultrasonic homogenization and in-situ polymerization. The main objective of this study was to model and optimize the microencapsulation process. Five-level central composite design was used to design, model, and optimize the microencapsulation process. A quadratic model was constructed to show the dependency of the percentage of encapsulated linseed oil and capsule size, as model responses, on the studied independent variables (the rotational speed of the agitator and the power and duration of sonication). Analysis of variance showed that all of the variables have significant effects on the encapsulated linseed oil percentage, while the rotational speed of the agitator and sonication time is effective variables for controlling the capsule size. Under the determined optimum conditions, a maximum encapsulated linseed oil percentage (ELO%) of 93.9% and a minimum micro/nanocapsule size of 0.574 μm were achieved at 594 rpm agitation, 350 W sonication power, and 3 min sonication time. Validation of the model was performed. The percentage relative errors between the predicted and experimental values of the ELO% and micro/nanocapsule size are 1.28% and 3.66%, respectively. The efficacy of the optimum micro/nanocapsules in healing cracks in a glass flake epoxy paint and corrosion protection was investigated by the salt spray test and Tafel polarization technique.  相似文献   

4.
The bonded-particle model (BPM) is commonly used in numerical analysis of the mechanical behavior of rock samples. Constructing a BPM model requires specification of a number of microstructural parameters, including the parallel-bond tensile strength, parallel-bond cohesion strength, parallel-bond effective modulus, parallel-bond friction angle, and parallel-bond stiffness ratio. These parameters cannot be easily measured in the laboratory or directly related to either measurable or physical material parameters. Hence, a calibration process is required to choose the values to be used in simulations of physical systems. In this study, response surface methodology along with the central composite design approach is used to calibrate BPMs. The sensitivities of the microparameters related to the uniaxial compressive strength (UCS) and elasticity modulus (i.e., the macroscopic responses of the models) are thoroughly scrutinized. Numerical simulations are performed to carefully assess the performance of the model. It is found that the elasticity modulus is highly correlated with the parallel-bond effective modulus. In addition, the parallel-bond tensile and cohesion strengths are the two most significant microparameters with a considerable effect on the UCS. The predicted values determined by the proposed approach are in good agreement with the observed values, which verifies the applicability of the proposed method.  相似文献   

5.
The mechanical strength of solid catalysts is considered an important factor in terms of ensuring the reliable performance of industrial reactors. In this work, a pelletizing method was used to form gamma alumina support for catalysts. Response surface methodology (RSM) was employed to analyze and model the effects of various manufacturing parameters on the crushing strength of the supports. These parameters were binder concentration, compaction pressure, calcination temperature, and drying mode. The suggested model was verified by applying an analysis of variance to assess its validity with regard to crushing strength. The mechanical reliability of various supports was also determined by calculating their Weibull modulus values through linear regression of the Weibull equation. The material with the highest mechanical strength reliability will have both a high mean crushing strength and a high Weibull modulus, and the best values obtained for a support in this work were 70.7 MPa and 6.63, respectively. The conditions used to form this sample were: 20 mass% binder concentration, 861 MPa compaction pressure, 466 °C calcination temperature, and gentle drying.  相似文献   

6.
基于响应面模型的薄壁构件耐撞性优化设计   总被引:14,自引:0,他引:14  
建立了薄壁构件的结构耐撞性优化模型,通过试验设计在设计空间中选择少量样本获得设计的响应特性,建立响应面模型,并应用Pareto遗传算法进行结构耐撞性的优化设计。  相似文献   

7.
在岩体工程等复杂系统的可靠性分析中, 得到极限状态方程的解析表达式往往是非常困难的。本文提出了采用响应面方法结合数值试验对其进行拟合, 求系统的可靠度, 并应用于某地下岩体空间围岩稳定的可靠性分析。  相似文献   

8.
Aeroelastic stability of a flexible supersonic flight vehicle is considered using nonlinear dynamics, nonlinear aerodynamics, and a linear structural model. Response surfaces including global multivariate orthogonal modeling functions are invoked to derive applied nonlinear aerodynamic coefficients. A modified Gram–Schmidt method is utilized to orthogonalize the produced polynomial multivariate functions, selected and ranked by predicted squared error metric. Local variation of angle-of-attack and side-slip angle is applied to the analytical model. Identification of nonlinear aerodynamic coefficients of the flight vehicle is conducted employing a CFD code and the required analytical model for simulation purposes is constructed. The method is used to determine the aeroelastic instability and response of a selected flight vehicle.  相似文献   

9.
应用响应面结合空间映射方法,在第1次迭代拟合极限状态函数,其它迭代应用映射技术在第1迭代响应面基础上映射调整得到新的极限状态函数,并进行可靠性分析.这样就改变了序列响应面方法评价可靠性时需要反复对模型进行试验设计、分析并拟合极限状态函数的执行过程,从而大大降低了模型分析的计算量.  相似文献   

10.
针对二维连续体形状优化过程中解析灵敏度求解困难的情况,利用响应面方法将目标函数和约束函数近似显式化,建立序列二次规划模型.为了保证优化模型的可靠性,结合试验设计方法,以较少的结构分析代价构造约束响应面,从而能够快而稳定地收敛,本文重点研究并建立了二次近似评价函数用以计算自适应运动极限的策略.算例说明这种策略是有效而稳定的.  相似文献   

11.
基于响应面方法的桁架截面敏度分析和优化   总被引:2,自引:0,他引:2  
把响应面方法引入桁架截面优化中,将应力和位移约束近似表达为桁架截面倒变量的线性函数.为拟合响应面,基于中心复合和单纯形试验设计方法开发了中心对称和拟单纯形试验设计两种方法,既可保证约束近似精度,又降低了结构分析计算量.对于桁架结构重量目标函数,直接推出倒变量的二阶形式,以桁架重量最小为目标的优化问题构造为标准的二次规划模型.将响应面方法计算的位移对设计变量的敏度与莫尔积分方法的近似显式进行了对比.以MSC.Patran为平台的数值算例表明:结合响应面方法,应用序列二次规划对问题进行寻优,其收敛精度及稳定性都可获得保障.  相似文献   

12.
基于响应面方法的结构碰撞优化   总被引:5,自引:1,他引:5  
应用响应面方法可将结构响应表达为设计变量的显式形式.为拟合响应面,基于中心复合设计和单纯形设计简化出了中心对称和拟单纯形设计,其既可以保证约束近似精度,同时降低计算量.针对常见优化问题,使用响应面方法将其构造为线性或者非线性约束优化模型,并应用Matlab优化工具箱求解.方管碰撞优化数值算例表明文中提出的试验设计方法及优化模型有较好的求解效率和精度.  相似文献   

13.
Numerical optimization techniques in flow design are often used to find optimal shape solutions, regarding, for instance, performance, flow behaviour, construction considerations and economical aspects. The present paper investigates the possibilities of using these techniques in the design process of a hydropower plant. This is realized by optimizing the shape of an existing sharp heel draft tube and validating the result with previously performed experiments. The actual shape optimization is carried out with the response surface methodology, by maximizing the average pressure recovery factor and minimizing the energy loss factor. The result from the optimization shows that it is possible to find an optimal solution on rather coarse grids. The location of the optimum is similar to the experiments, but the improvements are unexpectedly small. This surprising result indicates that the simulated flow field does not completely act as the real flow, which may be a result of the applied inlet boundary conditions, insufficient turbulence models and/or the steady flow assumption. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
简单介绍了响应面方法的实质,并将其应用于二维连续体结构形状优化中,结合有限元方法,近似拟合出了状态约束(应力和位移)对设计变量的显函数,代替了复杂的解析灵敏度分析,以MSC/Patran为平台采用PCL语言开发了二维连续体形状优化的程序.文中算例通过与差分法的比较表明了这一方法的有效性和可靠性.  相似文献   

15.
    
A sensitivity analysis is performed to analyze the effects of the nanoparticle(NP) aggregation and thermal radiation on heat transport of the nanoliquids(titania based on ethylene glycol) over a vertical cylinder. The optimization of heat transfer rate and friction factor is performed for NP volume fraction(1% φ 3%), radiation parameter(1 Rt 3), and mixed convection parameter(1.5 λ 2.5) via the facecentered central composite design(CCD) and the response surface methodology(RSM).The modified Krie...  相似文献   

16.
SURFACE MODIFICATION AND DISPERSION OF NANODIAMOND IN CLEAN OIL   总被引:1,自引:0,他引:1  
The effect of different kinds of surfactants on the size distribution of nanodiamond particles in clean oil was studied.Results show that the dispersing stability of nanodiamond modified with surfactangts YS-1 and SB-18 simulta-neously is much better than those modified with either of them because of synergism of the surfactangts.And the particle size distribution in the system can be improved remarkably after the adoption of hyperdispersants such as SA-E and SA-F.Anchoring groups of those hyperdispersants can be bonded with the particle surface by chemical and/or hydrogen bonding and their soluble chains are well compatible with the dispersion media.As a result,the particles are uniformly distrbuted in the system owing to the steric stabilization.A very stable clean-oil based nanodiamond suspension with an average particle size of around 53.2 nm was prepared.  相似文献   

17.
基于响应面法的新型排翼式飞艇的气动优化设计   总被引:1,自引:0,他引:1  
李峰  叶正寅  高超 《力学学报》2011,43(6):1068-1076
采用均匀试验设计的方法, 以后掠排翼式飞艇为初始气动外形, 后翼的轴、法向坐标为设计变量, 升力、阻力系数和升阻比为目标函数, 通过CFD结合响应面近似理论, 建立了气动参数的二阶响应面优化模型, 并针对排翼式飞艇的升阻特性进行了优化设计. 研究结果表明: 响应面方法是解决气动优化问题的一种行之有效的方法;优化后排翼式飞艇的气动性能得到明显改善, NACA0020, NACA0030, NACA0040排翼式飞艇的升阻比分别提高了9.61%, 6.08%, 13.08%; 飞翼的轴向和法向位置对各气动参数的影响不尽相同, 升力系数C_rm l和升阻比k对轴向位置更为敏感, 而轴向和法向位置对阻力系数C_d的影响则基本相当.   相似文献   

18.
薄壳附加阻尼层旨在降低薄壳结构的噪声,为此本文研究该系统成本最小的优化设计:以包含阻尼的结构各层的倒厚度为设计变量,以满足设计的噪声要求为约束条件,以结构成本(包括约束阻尼层结构的薄壳基础层、阻尼层、约束层的材料费用)作为目标函数.利用K-S函数得到最大振动加速度级来描述噪声,运用响应面方法显式化噪声约束函数,采用序列二次规划求解优化模型.算例表明,增加阻尼层和约束层的厚度有利于增强结构的阻尼和刚度,优化设计使得薄壳结构的造价降低8.44%,且使结构的振动综合指标降低了27.08%,从而使结构减振降噪性能得到了提高.  相似文献   

19.
    
In this study a 2D FEM model was developed to analyze ruts formation, rolling resistance, and power loss for a grape transporting cart aimed to replace the use of heavy tractors while harvesting grape. The model was supported by experiments in a vineyard in South Italy. Cone penetration tests were conducted to estimate frictional and cohesive properties in three soil conditions: firm, soft, and wet saturated. A tractor pulled test rig for a single wheel was developed to measure rolling resistance and sinkage, and complete the selection of the soil parameters. Completed the model, the analysis was conducted for a range of different wheel dimensions, and the outputs analyzed through response surfaces. The results showed the different impacts that width and diameter have on ruts formation and rolling resistance for different soil conditions. Wider wheels determined a main reduction of the sinkage, while the width contribution to the rolling resistance was affected by the total soil volume deformed. Larger diameters led to lower rolling resistance, with a higher impact on more deformable soils. Contact stress was compared with the thresholds recommended in the literature to determine the acceptable designs. This analysis represents a tool to select the running gear dimensions.  相似文献   

20.
The design of long-span cable-stayed bridge involves a large number of loads, geometric and material parameters, all of which can interact in a random fashion. It is desirable to have a total measure of the operational reliability and safety of the structural components. Based on the box-girder component strain history data of the Runyang Cable-stayed Bridge (RYCB) in China, a computer algorithm is developed to evaluate the fatigue damage that is assumed to occur in increments, according to a lognormal distribution. The corresponding probability density function is then found to obtain a fatigue reliability index β for ranking the integrity of the girders. Emphases are placed on the overall scheme of structural reliability evaluation such that the different fatigue damage criteria, probability density functions, and strain measurement techniques can be made. Finite element calculations are also used to provide strain data at locations that are not conducive for installing strain gauges, while the compatibility of measured and calculated data is made empirically. Each of the subroutine in the fatigue reliability algorithm can be altered for improvement. The flexibility allows up-dating the prediction as the monitored strains are changed by the environmental conditions. Preliminary results are first obtained to test the selected damage increments in relation to the probability function and fatigue damage criterion. Particular attention has been given to test the sensitivity of the combined governing parameters. The highly non-linear behavior of numerical calculations related to fatigue failure necessitates an in-depth understanding of the physical model. The condition under which fatigue damage accumulation is needed in contrast to the linear sum of fatigue cycles will be left for the future. Justification should be given to include the more complex issues. The aim here is to seek a simple, and yet reliable index that can account for the fatigue damage of box-girder of long cable-stayed bridges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号