首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Background: Tomato by-products contain a great variety of biologically active substances and represent a significant source of natural antioxidant supplements of the human diet. The aim of the work was to compare the antioxidant properties of a by-product from an ancient Tuscan tomato variety, Rosso di Pitigliano (RED), obtained by growing plants in normal conditions (-Ctr) or in drought stress conditions (-Ds) for their beneficial effects on vascular related dysfunction. Methods: The antioxidant activity and total polyphenol content (TPC) were measured. The identification of bioactive compounds of tomato peel was performed by HPLC. HUVEC were pre-treated with different TPC of RED-Ctr or RED-Ds, then stressed with H2O2. Cell viability, ROS production and CAT, SOD and GPx activities were evaluated. Permeation of antioxidant molecules contained in RED across excised rat intestine was also studied. Results: RED-Ds tomato peel extract possessed higher TPC than compared to RED-Ctr (361.32 ± 7.204 mg vs. 152.46 ± 1.568 mg GAE/100 g fresh weight). All extracts were non-cytotoxic. Two hour pre-treatment with 5 µg GAE/mL from RED-Ctr or RED-Ds showed protection from H2O2-induced oxidative stress and significantly reduced ROS production raising SOD and CAT activity (* p < 0.05 and ** p < 0.005 vs. H2O2, respectively). The permeation of antioxidant molecules contained in RED-Ctr or RED-Ds across excised rat intestine was high with non-significant difference between the two RED types (41.9 ± 9.6% vs. 26.6 ± 7.8%). Conclusions: RED-Ds tomato peel extract represents a good source of bioactive molecules, which protects HUVECs from oxidative stress at low concentration.  相似文献   

2.
The soft rot disease caused by Rhizopus stolonifer is an important disease in cherry tomato fruit. In this study, the effect of iturin A on soft rot of cherry tomato and its influence on the storage quality of cherry tomato fruit were investigated. The results showed that 512 μg/mL of iturin A could effectively inhibit the incidence of soft rot of cherry tomato fruit. It was found that iturin A could induce the activity of resistance-related enzymes including phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), peroxidase (POD), glucanase (GLU), and chitinase (CHI), and active oxygen-related enzymes including ascorbate peroxidases (APX), superoxide dismutases (SOD), catalases (CAT), and glutathione reductase (GR) of cherry tomato fruit. In addition, iturin A treatment could slow down the weight loss of cherry tomato and soften the fruit. These results indicated that iturin A could retard the decay and improve the quality of cherry tomato fruit by both the inhibition growth of R. stolonifera and the inducing the resistance.  相似文献   

3.
New strategies of control need to be developed with the aim of economic and environmental sustainability in plant and crop protection. Metabolomics is an excellent platform for both understanding the complex plant–pathogen interactions and unraveling new chemical control strategies. GC-MS-based metabolomics, along with a phytohormone analysis of a compatible and incompatible interaction between tomato plants and Fusarium oxysporum f. sp. lycopersici, revealed the specific volatile chemical composition and the plant signals associated with them. The susceptible tomato plants were characterized by the over-emission of methyl- and ethyl-salicylate as well as some fatty acid derivatives, along with an activation of salicylic acid and abscisic acid signaling. In contrast, terpenoids, benzenoids, and 2-ethylhexanoic acid were differentially emitted by plants undergoing an incompatible interaction, together with the activation of the jasmonic acid (JA) pathway. In accordance with this response, a higher expression of several genes participating in the biosynthesis of these volatiles, such as MTS1, TomloxC, TomloxD, and AOS, as well as JAZ7, a JA marker gene, was found to be induced by the fungus in these resistant plants. The characterized metabolome of the immune tomato plants could lead to the development of new resistance inducers against Fusarium wilt treatment.  相似文献   

4.
Recently, concerns have been raised globally about antimicrobial resistance, the prevalence of which has increased significantly. Carbapenem-resistant Klebsiella pneumoniae (KPC) is considered one of the most common resistant bacteria, which has spread to ICUs in Saudi Arabia. This study was established to investigate the antibacterial activity of biosynthesized zinc oxide nanoparticles (ZnO-NPs) against KPC in vitro and in vivo. In this study, we used the aqueous extract of Acacia nilotica (L.) fruits to mediate the synthesis of ZnO-NPs. The nanoparticles produced were characterized by UV-vis spectroscopy, zetasizer and zeta potential analyses, X-ray diffraction (XRD) spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The antimicrobial activity of ZnO-NPs against KPC was determined via the well diffusion method, and determining minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), the results showed low MIC and MBC when compared with the MIC and MBC of Imipenem and Meropenem antibiotics. The results of in vitro analysis were supported by the results upon applying ZnO-NP ointment to promote wound closure of rats, which showed better wound healing than the results with imipenem ointment. The biosynthesized ZnO-NPs showed good potential for use against bacteria due to their small size, applicability, and low toxicity to human cells.  相似文献   

5.
《Solid State Sciences》2012,14(4):488-494
Un-doped and doped ZnO nanoparticles (Zn0.97X0.03O-NPs, X = Mn, Co, and Ni) were synthesized from a metal acetate precursor and acetic acid by a modified sol–gel combustion method. The compounds were synthesized at calcination temperatures of 650 °C for 1 h. The synthesized un-doped/doped ZnO-NPs were characterized by X-ray diffraction analysis (XRD) and high-magnification transmission electron microscopy (TEM). The XRD results revealed that the sample product was crystalline with a hexagonal wurtzite phase. The TEM showed ZnO-NPs nearly spherical shapes and a non-uniform shape for doped ZnO-NPs. The crystalline development in the ZnO-NPs was investigated by X-ray peak broadening. The size–strain plot (SSP) method was used to study the individual contributions of crystallite sizes and lattice strain on the peak broadening of the un-doped and doped ZnO-NPs. Physical parameters such as strain, stress and energy density values were calculated more precisely for all reflection peaks of XRD corresponding to the wurtzite hexagonal phase of ZnO lying in the range of 20–80° from the SSP results. The vibrating sample magnetometer (VSM) was also used to study the magnetic behavior of the samples in the ceramic form. The obtained results showed that strain play an important role in peak broadening; moreover, the mean crystalline size of the un-doped and doped ZnO-NPs estimated from the TEM and the SSP method were highly inter-correlated.  相似文献   

6.
《Comptes Rendus Chimie》2014,17(2):91-102
In recent years, polyaniline/CoFe2O4 nanocomposites have gained attention because of their wide utilization in optoelectronics and biomedical studies. However, very limited research has been carried out on the anticandidal activity of polyaniline/CoFe2O4 nanocomposite against Candida spp. Thus, the study was designed to investigate the anticandidal potential of PANI/CoFe2O4 nanocomposite against Candida albicans 077. PANI/CoFe2O4 nanocomposite (denoted as “cfPNCs”) was synthesized by polymerization of aniline in the presence of CoFe2O4 nanoparticles. The structural and thermal properties of the synthesized PANI/CoFe2O4 nanocomposite were investigated. It was noteworthy that PANI/CoFe2O4 nanocomposite showed promising anticandidal activity in a dose-dependent manner. Results also showed that the protection of histidine (a ROS quencher) against ROS clearly suggested the implication of ROS in anticandidal activity of PANI/CoFe2O4 nanocomposite. It is encouraging to conclude that PANI/CoFe2O4 nanocomposite bears the potential of their applications in biomedicine, especially nanotherapy for diseases caused by C. albicans.  相似文献   

7.
Toxicity of zinc oxide nanoparticle (ZnO-NPs) powder and water soluble salt of Zn (ZnCl2) to the annelid Enchytraeus crypticus was tested in agarose gel. Influence of the spiking method on the resulting size of nanoparticles and on E. crypticus mortality was studied. Two methods of ZnO-NPs powder (mean particle size diameter of 10 nm) introduction into the exposure media were used. In the first method, the nano-powder was initially cryogenically ground with dry agar followed by an addition of water. The second procedure began with re-suspension of nanoparticles in demineralized water containing a dispersant (sodium pyrophosphate decahydrate). The obtained colloid was subsequently mixed with hot agar gel. Relative mortality in worms observed after 96 h of their exposure to the ZnO-NPs concentrations (all in mg of ZnO-NPs per kg of agar) of 50, 100, 200, 500 and 1000 in the cryogenically ground medium ranged between 28.9 % and 34.4 % and it did not exhibit any concentration dependence. When the second method of exposure media preparation was applied, the relative mortality ranged from 0 % to 66.6 % in the same concentration region depending on the concentration. Scanning electron microscopy (SEM) revealed the presence of large agglomerates (1–10 µm in diameter) in the media prepared by cryogenic grinding with the highest concentration of ZnO-NPs. Neither the cryogenically ground media with lower ZnO-NPs concentrations nor any media prepared from colloidal solutions contained agglomerates exceeding 100 nm, detectable by SEM. Hydrodynamic diameters of particles in the colloids used in the second method of agar preparation were measured using dynamic light scattering (DLS) and ranged between 164 nm and 240 nm. The observed toxicity was thus clearly dependent on the size of ZnO-NPs agglomerates and the technique of exposure media preparation. Experimentally detected LC50 value for dissolved Zn2+ was 37.2 mg kg?1 in agar. The same concentration of Zn induced an approximately 30 % mortality of E. crypticus when administered in form of cryogenically ground ZnO-NPs with agar. No observable effects were found at this ZnO-NPs concentration when the exposure medium was prepared from the colloid solution.  相似文献   

8.
Oxidative stress plays a role in regulating a variety of physiological functions in living organisms and in the pathogenesis of articular cartilage diseases. Piper kadsura Ohwi is a traditional Chinese medicine that is used as a treatment for rheumatic pain, and the extracts have anti-inflammatory and antioxidant effects. However, there is still no study related to cell protection by P. kadsura. The P. kadsura extracts (PKE) were obtained by microwave-assisted extraction, liquid-liquid extraction, and column chromatography separation. The extracts could effectively scavenge free radicals in the antioxidant test, the EC50 of extracts is approximately the same as vitamin C. PKE decreased the apoptosis of SW1353 cells treated with H2O2 and could upregulate the gene expression of antioxidant enzymes (SOD-2, GPx, and CAT) and the Bcl-2/Bax ratio, as well as regulate PARP, thus conferring resistance to H2O2 attack. PKE protects cells against apoptosis caused by free radicals through the three pathways of JNK, MEK/ERK, and p38 by treatment with MAPK inhibitor. The identified components of PKE were bicyclo [2.2.1] heptan-2-ol-1,7,7-trimethyl-,(1S-endo)-, alpha-humulene, and hydroxychavicol by gas chromatography–mass spectrometry.  相似文献   

9.
Single crystals of the thallium ruthenium pyrochlore have been grown by flux method under high oxygen pressure. The growth conditions were determined by direct observations using in situ powder X-ray diffraction (XRD) method under high pressure and high temperature. The crystals were grown using NaCl-KCl flux at 1350 °C and B2O3 flux at 1150 °C. High growth temperature of 1350 °C for the NaCl-KCl flux caused Pt contamination from the crucible and oxygen deficiency for the crystals obtained. The crystal growth using B2O3 flux proceeded at lower temperature by grain growth with material transfer through B2O3. The crystal obtained was characterized by single-crystal XRD method, and was found to have a stoichiometric composition, Tl2Ru2O7−δ (δ=0), with a structural phase transition around 120 K. The grain growth technique with B2O3 is efficient for high-temperature single-crystal growth under high pressure.  相似文献   

10.
The study was undertaken to investigate the antioxidant, genotoxic, and cytotoxic potentialities of phyto-fabricated zinc oxide nanoparticles (ZnO-NPs) from Ipomoea obscura (L.) Ker Gawl. aqueous leaf extract. The UV-visible spectral analysis of the ZnO-NPs showed an absorption peak at 304 nm with a bandgap energy of 3.54 eV, which are characteristics of zinc nanoparticles. Moreover, the particles were of nano-size (~24.26 nm) with 88.11% purity and were agglomerated as observed through Scanning Electron Microscopy (SEM). The phyto-fabricated ZnO-NPs offered radical scavenging activity (RSA) in a dose-dependent manner with an IC50 of 0.45 mg mL−1. In addition, the genotoxicity studies of ZnO-NPs carried out on onion root tips revealed that the particles were able to significantly inhibit the cell division at the mitotic stage with a mitotic index of 39.49%. Further, the cytotoxic studies on HT-29 cells showed that the phyto-fabricated ZnO-NPs could arrest the cell division as early as in the G0/G1 phase (with 92.14%) with 73.14% cells showing early apoptotic symptoms after 24 h of incubation. The results of the study affirm the ability of phyto-fabricated ZnO-NPs from aqueous leaf extract of I. obscura is beneficial in the cytotoxic application.  相似文献   

11.
Carrying out the in vivo syntheses of drugs toxic to tumors based on the specific features of the tumor microenvironment is critical for ensuring specific antitumor efficacy. However, achieving in situ high-yield synthetic toxic drugs from non-toxic agents and reducing their drug resistance in hypoxic tumors remain challenges. Herein we created a tumor-microenvironment-responsive porous Pt/Pt(iv) methylene blue coordination polymer nanoshuttle (Pt/PtMBCPNS) photosensitizer with spatiotemporally controlled O2 and singlet oxygen (1O2) self-sufficient for the in vivo high-yield synthesis of drugs and efficient hypoxic tumor therapy. After being endocytosed, the nanophotosensitizer as a cascade catalyst was observed to effectively catalyze the conversion of endogenous H2O2 to O2, and was hence found to play a dual role in the enhanced tumor therapy. PtMBCPNSs, upon being irradiated with red light, efficiently converted O2 into 1O2. Subsequently, 1O2 oxidized non-toxic 1,5-dihydroxynaphthalene to form the anticancer agent juglone with a high yield. In addition, O2 was found to be able to improve the hypoxic microenvironment without light irradiation, thus enhancing the antitumor efficacy of the produced drugs and reducing drug resistance. As a result, by enhancing the synergistic effect of the treatment, this nanophotosensitizer significantly inhibited the growth of tumors and avoided damage to normal tissues/organs. Collectively, this work highlights a robust nanoplatform with the spatiotemporally controlled in vivo high-yield synthesis of drugs and generation of O2 to help overcome the current limitations of chemical-based therapies against hypoxic tumors.

A porous photosensitizer displaying catalase-like activity and drug synthesis ability was synthesized for the synergistic chemo-photodynamic therapy, opening new promising ways for carrying out the precise cooperative treatment of hypoxic tumors.  相似文献   

12.
Abstract— In this research, we measured the short- and long-term, stem elongation responses of wild-type and aurea(au) mutant tomato plants to different photosynthetically active radiation (PAR) levels by using linear voltage transducers. Stem elongation was continuously measured in green tomato plants over 2.75 days, under 12 h light/12 h dark photoperiods or in darkness after a 6 h irradiation period. There is no significant difference in stem elongation between wild-type plants pregrown at either LOO or 400 μmol m?2 s?1 and then exposed to 12 h photoperiods. However, in the au mutant there is a very large difference between plants pregrown under 100 or 400 umol m ?2 s?1 and then exposed either to 12 h photoperiods or to continuous darkness. Total stem elongation of the wild type appears to be maximal at 100 umol m?2 s?1, while that of the au mutant appears to be maximal with PAR 400 umol m?2 s?1. Wild-type plants displayed PAR-dependent (in the range 100-800 umol m?2 s?1) inhibition of growth both during the day and during the night. In contrast, the au mutant showed a fluence-rate-dependent promotion of growth during the dark periods in the range of 10-400 umol m?2 s?1. Large, fast and opposite changes in stem elongation rate at the light/dark and dark/light transitions were present in both genotypes. Internode elongation rate in the first half of the night was always modest in wild-type tomato, whereas it increased rapidly in the au mutant. Stem elongation rate of wild type starts to increase after about 6 h in darkness, showing the typical time course of escape from Pfr-mediated inhibition of elongation by an end-of-day response. The role of phytochrome level and type in sensing light quantity is discussed.  相似文献   

13.
Major novel steroidal alkaloid glycosides, named esculeoside A (1) and esculeoside B (2), have been isolated from the pink color-type and the red color-type, respectively, of the ripe tomato fruits of Lycopersicon esculentum MILL. for the first time. The structures of 1 and 2 have been characterized as 3-O-β-lycotetraosyl (5S,22S,23S,25S)-23-acetoxy-3β,27-dihydroxyspirosolane 27-O-β-d-glucopyranoside and 3-O-β-lycotetraosyl (5S,22S,23R,25S)-22,26-epimino-16β,23-epoxy-3β,23,27-trihydroxycholestane 27-O-β-d-glucopyranoside, respectively.  相似文献   

14.
In the current study, the chemical composition and total phenolic content of tomato seed flours, along with potential health beneficial properties, including free radical scavenging capacities, anti-inflammatory capacities, and gut microbiota profile modulation, were examined using two different batches. Eight compounds were identified in the tomato seed flour, including malic acid, 2-hydroxyadipic acid, salicylic acid, naringin, N-acetyl-tryptophan, quercetin-di-O-hexoside, kaempferol-di-O-hexoside, and azelaic acid. The total phenolic contents of tomato seed flour were 1.97–2.00 mg gallic acid equivalents/g. Oxygen radical absorbing capacities (ORAC), 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacities (DPPH), and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) cation radical scavenging capacities (ABTS) were 86.32–88.57, 3.57–3.81, and 3.39–3.58 µmoles Trolox equivalents/g, respectively, on a per flour dry weight basis. The mRNA expression of the pro-inflammatory markers, interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α), were dose-dependently suppressed by tomato seed flour extracts. The extracts altered five of the eight bacterial phyla and genera evaluated. The results may provide some scientific support for the use of tomato seed flour as value-added food ingredients.  相似文献   

15.
In this work, a Low-Density Polyethylene (LDPE) - Ethylene Vinyl Acetate (EVA) polymeric blend with antimicrobial activity was obtained. The main objective was to develop an antibacterial LDPE-EVA polymeric blend from the incorporation of antibacterial nanoparticles to increase the antimicrobial and sanitary safety of this polymeric blend when applied in the manufacture of medical products. The antibacterial activity was obtained from the incorporation of zinc oxide nanoparticles (ZnO-NPs) in the LDPE-EVA polymeric blends and the thermal properties were evaluated by differential scanning calorimetry and the mechanical properties by tensile stress tests for different percentages of ZnO-NPs. Scanning electron microscopy was used to study the morphological characteristics of the ZnO-NPs and also the characteristics of the distribution of nanoparticles in the polymer blends. The dispersive energy of x-ray fluorescence spectroscopy was used to study the chemical composition of the nanoparticles. Microbiological tests were performed to evaluate the antibacterial activity of the LDPE-EVA polymeric blends without and with ZnO-NPs against the bacteria Staphylococcus aureus (gram-positive) and Escherichia coli (gram-negative). The results obtained were excellent for the future application of the antibacterial LDPE-EVA polymeric blends to the manufacture of medical products. The Young's modulus values decreased and the tensile strength values showed small reductions and the thermal properties of the LDPE-EVA were not modified. However, the antibacterial activity of LDPE-EVA with 4 wt% of ZnO-NPs was excellent, eliminating the gram-positive bacteria in just 2 h and the gram-negative bacteria in just 2.5 h on their surfaces.  相似文献   

16.
Development of suitable potent antimicrobial is the urgent need of modern era to cope up the problem of antimicrobial resistance. The applications of nanotechnology in metal oxides have shown favorable effects to some extent in this area. Thus, the present study was investigated to evaluate the antibacterial properties of cobalt oxide (Co3O4) nanoparticles at different concentrations and their comparison with standard antimicrobials i.e. tetracycline and gentamicin. Nanoparticles were synthesized and characterized by standard techniques. The antibacterial potentials of Co3O4 nanoparticles against S. aureus and E. coli were determined at various concentrations. The maximum zone of inhibitions of Co3O4 nanoparticles against S. aureus and E. coli at 500 μg/ml were 21.17 mm and 24.00 mm, respectively. The Co3O4 nanoparticles seemed more effective than gentamicin against S. aureus and E. coli. The nanoparticles with respect to tetracycline showed higher than 1 activity index at ≥ 125 μg/ml for E. coli and ≥31.25 μg/ml for S. aureus. It was also higher than 1 at all compared concentrations with respect to gentamicin against both bacteria. In conclusion, Co3O4 nanoparticles seemed to have potent antibacterial potential and these might be very helpful to replace the conventional antimicrobials to solve the problem of antibacterial resistance.  相似文献   

17.
Cherry is a fleshy drupe, and it is grown in temperate regions of the world. It is perishable, and several biotic and abiotic factors affect its yield. During April–May 2021, a severe fruit rot of cherry was observed in Swat and adjacent areas. Diseased fruit samples were collected, and the disease-causing pathogen was isolated on PDA. Subsequent morphological, microscopic, and molecular analyses identified the isolated pathogen as Aspergillus flavus. For the control of the fruit rot disease of cherry, iron oxide nanoparticles (Fe2O3 NPs) were synthesized in the leaf extract of Calotropis procera and characterized. Fourier transform infrared (FTIR) spectroscopy of synthesized Fe2O3 NPs showed the presence of capping and stabilizing agents such as alcohols, aldehydes, and halo compounds. X-ray diffraction (XRD) analysis verified the form and size (32 nm) of Fe2O3 NPs. Scanning electron microscopy (SEM) revealed the spinal-shaped morphology of synthesized Fe2O3 NPs while X-ray diffraction (EDX) analysis displayed the occurrence of main elements in the samples. After successful preparation and characterization of NPs, their antifungal activity against A. flavus was determined by poison technique. Based on in vitro and in vivo antifungal activity analyses, it was observed that 1.0 mg/mL concentration of Fe2O3 can effectively inhibit the growth of fungal mycelia and decrease the incidence of fruit rot of cherry. The results confirmed ecofriendly fungicidal role of Fe2O3 and suggested that their large-scale application in the field to replace toxic chemical fungicides.  相似文献   

18.
A mixture of chitin-binding lectins from Tomato (Solanum lycopersicum) fruits, designated as Tomato chitin-binding lectins (TCLs), was isolated through affinity chromatography using an acetylated chitin column. Molecular weights of TCLs were determined to be 30 to 115 KDa which possessed mild toxicity with an LC50 value of 521 µg/ml examined by the brine shrimp nauplii toxicity assay. Strong antibacterial activity of TCLs was found against Escherichia coli, Staphylococcus aureus and Shigella boydii at a concentration of 500 µg/ml by using disc diffusion method. Minimum inhibitory concentrations (MIC) of TCLs against Staphylococcus aureus and Escherichia coli were found to be 200 µg/ml and 140 µg/ml, respectively whereas minimum bactericidal concentrations (MBC) against the same bacterial species were 840 and 600 µg/ml, respectively. TCLs also exerted antibiofilm activity (53.32% at 250 μg/ml) against Escherichia coli. Strong antifungal activity of TCLs against Aspergillus niger was found at 600 µg/ml whereas the lectin mixture agglutinated A. niger spores at 200 µg/ml. TCLs exhibited 19.63% and 59.91% anti-proliferative activity against Ehrlich ascites carcinoma (EAC) cells in vivo in Swiss albino mice when intraperitonealy injected at doses 1.0 mg/kg/day and 2.0 mg/kg/day, respectively for five consecutive days. Morphological changes of apoptosis in EAC cells under fluorescence microscope and alteration of the expression of apoptosis-related genes (Fas, Caspase 8 and Caspase 3) had also been observed. MTT assay showed 27.61%, 38.74% and 49.23% of in vitro anticancer activity of the tomato lectins at concentrations of 37.5, 75 and 150 µg/ml, respectively.  相似文献   

19.
According to recent observations antibodies can catalyze the formation of previously unknown oxidants, dihydrogen trioxide (H2O3) and ozone (O3), formed in the interaction between singlet oxygen (1O2) and H2O. The O3 molecules can be detected indirectly e.g. in TLC/OPLC chromatographic spots in the simple BioArena operating system using O3-eliminating molecules in the culture medium. It is currently supposed that plants can be used for the direct detection of O3 during its eventual emission from stomata. Using the fresh primary leaves of different plant species O3 could be really detected by means of GC–MS-SIM from the space above the the leaves which were prepared in a CO2-containing headspace vessel. It has been also established that the CO2 also contained O3 molecules, and therefore, we had to use a correction to the observed data. These new findings indicate that not only formaldehyde but also O3 and their related bioreactive compounds may play a crucial role in disease resistance (e.g. in the mechanism of action of antibodies), cell proliferation and differentiation.  相似文献   

20.
Density functional calculations with the B3LYP functional were carried out for the [Ru(NO)Cl5]2−, [Ru(NO)(NH3)5]3+, [Ru(NO)(CN)5]2−, [Ru(NO)(CN)5]3−, [Ru(NO)(hedta)]q (hedta = N-(hydroxyethyl)ethylenediaminetriacetate triple-charged anion; q = 0, −1, −2), Rh2(O2CR)4, Rh2(O2CR)4(NO)2, Ru2(O2CR)4, Ru2(O2CR)4(NO)2, Ru2(dpf)4, and Ru2(dpf)4(NO)2 (dpf = N,N′-diphenylformamidinate ion; R = H, CH3, CF3) complexes. The electronic structure was analyzed in terms of Mayer and Wiberg bond order indices. The technique of bond order indices decomposition into σ-, π-, and δ-contributions was proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号