首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In December 2020, the U.K. authorities reported to the World Health Organization (WHO) that a new COVID-19 variant, considered to be a variant under investigation from December 2020 (VUI-202012/01), was identified through viral genomic sequencing. Although several other mutants were previously reported, VUI-202012/01 proved to be about 70% more transmissible. Hence, the usefulness and effectiveness of the newly U.S. Food and Drug Administration (FDA)-approved COVID-19 vaccines against these new variants are doubtfully questioned. As a result of these unexpected mutants from COVID-19 and due to lack of time, much research interest is directed toward assessing secondary metabolites as potential candidates for developing lead pharmaceuticals. In this study, a marine-derived fungus Aspergillus terreus was investigated, affording two butenolide derivatives, butyrolactones I (1) and III (2), a meroterpenoid, terretonin (3), and 4-hydroxy-3-(3-methylbut-2-enyl)benzaldehyde (4). Chemical structures were unambiguously determined based on mass spectrometry and extensive 1D/2D NMR analyses experiments. Compounds (1–4) were assessed for their in vitro anti-inflammatory, antiallergic, and in silico COVID-19 main protease (Mpro) and elastase inhibitory activities. Among the tested compounds, only 1 revealed significant activities comparable to or even more potent than respective standard drugs, which makes butyrolactone I (1) a potential lead entity for developing a new remedy to treat and/or control the currently devastating and deadly effects of COVID-19 pandemic and elastase-related inflammatory complications.  相似文献   

2.
Inulinases are enzymes involved in the hydrolysis of inulin, which can be used in the food industry to produce high-fructose syrups and fructo-oligosaccharides. For this purpose, different Aspergillus strains and substrates were tested for inulinase production by solid-state fermentation, among which Aspergillus terreus URM4658 grown on wheat bran showed the highest activity (15.08 U mL−1). The inulinase produced by this strain exhibited optimum activity at 60 °C and pH 4.0. A detailed kinetic/thermodynamic study was performed on the inulin hydrolysis reaction and enzyme thermal inactivation. Inulinase was shown to have a high affinity for substrate evidenced by very-low Michaelis constant values (0.78–2.02 mM), which together with a low activation energy (19.59 kJ mol−1), indicates good enzyme catalytic potential. Moreover, its long half-life (t1/2 = 519.86 min) and very high D-value (1726.94 min) at 60 °C suggested great thermostability, which was confirmed by the thermodynamic parameters of its thermal denaturation, namely the activation energy of thermal denaturation (E*d = 182.18 kJ mol−1) and Gibbs free energy (106.18 ≤ ΔG*d ≤ 111.56 kJ mol−1). These results indicate that A. terreus URM4658 inulinase is a promising and efficient biocatalyst, which could be fruitfully exploited in long-term industrial applications.  相似文献   

3.
A new oxylipin, (8E,12Z)-10,11-dihydroxyoctadeca-8,12-dienoic acid (1), a new steroid, 3β,4α-dihydroxy-26-methoxyergosta-7,24(28)-dien-6-one (2), and four known steroids, episterol (3), (22E,24R)-ergosta-7,22-dien-3β,5α,6α-triol (4), (22E,24R)-ergosta-5,22-dien-3β-ol (5), and (22E,24R)-ergosta-4,6,8(14),22-tetraen-3-one (6), were isolated from the cultures of Aspergillus flavus, an endophytic fungus isolated from the marine red alga Corallina officinalis. Their structures and relative stereochemistry were elucidated by 1D, 2D NMR and mass spectroscopic techniques. 1 and 2 exhibited low activity to inhibit acetylcholinesterase and no activity against plant pathogenic fungi Colletotrichum lagenarium and Fusarium oxysporum.  相似文献   

4.
Three new xanthones, namely huperxanthones A–C ( 1 – 3 , resp.), were obtained from the cultures of Aspergillus versicolor, a fungal endophyte of Huperzia serrata, together with 1,7‐dihydroxy‐8‐(methoxycarbonyl)xanthone‐3‐carboxylic acid ( 4 ), β‐diversonolic acid methyl ester ( 5 ), 4‐hydroxyvertixanthone ( 6 ), and sydowinin B ( 7 ). The structures of the new compounds were established by detailed NMR and MS analysis, especially by 2D‐NMR experiments. All xanthones were evaluated for their effects on α‐glucosidase. Compound 4 exhibited a potent inhibitory activity against α‐glucosidase with an IC50 value of 0.24 mM (vs. 0.38 mM for acarbose). The rest of the compounds showed weak or no activity against α‐glucosidase.  相似文献   

5.
Endophytic fungi are a diverse group of microorganisms that colonize the inter- or intracellular spaces of plants and exhibit mutual benefits. Their interactions with the host plant and other microbiomes are multidimensional and play a crucial role in the production of secondary metabolites. We screened bioactive compounds present in the extracts of Aspergillus flavus, an endophytic fungus isolated from the roots of the medicinal grass Cynodon dactylon, for its anticancer potential. An in vitro analysis of the Ethyl acetate extract from A. flavus showed significant cytostatic effects (IC50: 16.25 μg/mL) against breast cancer cells (MCF-7). A morphological analysis of the cells and a flow cytometry of the cells with annexin V/Propidium Iodide suggested that the extract induced apoptosis in the MCF-7 cells. The extract of A. flavus increased reactive oxygen species (ROS) generation and caused a loss of mitochondrial membrane potential in MCF-7 cells. To identify the metabolites that might be responsible for the anticancer effect, the extract was subjected to a gas chromatography-mass spectrometry (GC-MS) analysis. Interestingly, nine phytochemicals that induced cytotoxicity in the breast cancer cell line were found in the extract. The in silico molecular docking and molecular dynamics simulation studies revealed that two compounds, 2,4,7-trinitrofluorenone and 3α, 5 α-cyclo-ergosta-7,9(11), 22t-triene-6beta-ol exhibited significant binding affinities (−9.20, and −9.50 Kcal/mol, respectively) against Bcl-2, along with binding stability and intermolecular interactions of its ligand-Bcl-2 complexes. Overall, the study found that the endophytic A. flavus from C. dactylon contains plant-like bioactive compounds that have a promising effect in breast cancer.  相似文献   

6.
A novel lumazine peptide, aspergilumamide A ( 1 ), as well as a known analog penilumamide ( 2 ), were isolated from the mycelia of a marine‐derived fungus Aspergillus sp. (33241), obtained from the mangrove Bruguiera sexangula var. rhynchopetala collected from the South China Sea. The structure of 1 was identified by comprehensive spectroscopic analysis, including 1D‐ and 2D‐NMR, ESI‐MS, and MS/MS experiments. The absolute configuration of 1 was determined by Marfey's method.  相似文献   

7.
生物基表面活性剂由于其可再生资源和优异的表面/界面性质吸引了越来越多的关注。本文以可再生的油酸为原料,通过四步反应,制备了新型生物基支链表面活性剂,并评价了其表/界面性质、润湿性和生物降解性能。该新型生物基支链表面活性剂为4-(1-十七烷基)苯磺酸钠(9ΦC17S),依次经过烷基化反应、脱羧反应、磺化反应和中和反应而制得。其化学结构已通过电喷雾质谱、红外光谱和核磁共振波谱得以确认。4-(1-十七烷基)苯磺酸钠展现出良好的表/界面张力,临界胶束浓度(CMC)为317.5 mg·L-1,CMC处的表面张力为32.54 mN·m-1,当水溶液中碳酸钠浓度为8.48×104 mg·L-1、4-(1-十七烷基)苯磺酸钠浓度为8.36×104 mg·L-1时,油水的界面张力约为10-2 mN·m-1。此外,4-(1-十七烷基)苯磺酸钠在生物降解性和润湿性方面也显示出了良好的性能,最终生物降解评分为2.99,0.500 g·L-1 9ΦC17S溶液的气液固接触角为63.08°。该新型生物基表面活性剂丰富了以可再生资源为原料的生物基表面活性剂的结构多样性。  相似文献   

8.
9.
在溶剂热反应条件下, 用预先合成的乳酸衍生物(R)-H2CBA和(S)-H2CBA分别与含氮辅助配体(E)-1,2-二(4-吡啶基)乙烯(DPEE)和1,4-二(1H-咪唑-1-基)苯(1,4-DIB)组合, 制备出2对不同结构的单一手性配位聚合物[Cd2((R)-CBA)2(DPEE)(H2O)2]n(1-D), [Cd2((S)- CBA)2(DPEE)(H2O)2]n(1-L), [Cd((R)-CBA)(1,4-DIB)]·H2O(2-D)和[Cd((S)-CBA)(1,4-DIB)]·H2O(2-L). 其中1-D和1-L是由梯形Cd-CBA链和DPEE配体连接成的二维框架结构; 而2-D和2-L是三维超分子框架结构, 包含3种不同类型的对映手性螺旋链. 对上述化合物进行了粉末X射线衍射、 热重分析和圆二色谱分析, 并对其荧光性质进行了讨论.  相似文献   

10.
1 INTRODUCTION As is well known, some transition metal ions play an important role in controlling the behavior of many biological macromolecules and produce pro- found effects on their biological actions, medicine and people’s health[1~3]. Zinc is an essential com- ponent of many proteins. In the active sites of zinc enzymes, zinc is bound to the nitrogen of imidazole groups and oxygen of carboxylate groups of amino acids[4~6]. Additional interest in these proteins lies in the fact th…  相似文献   

11.
It has been demonstrated that acid urease is capable of decomposing urea in fermented beverage and foods. As urea is a precursor of ethylcarbamate, a potential carcinogenic compound, measures must be taken to control the level of urea. We herein describe the purification and characterization of a novel acid urease from Enterobacter sp. R-SYB082 and its application to the removal of urea in Chinese rice wine. The enzyme was purified to electrophoretic homogeneity using ethanol precipitation, Superdex 200 and Mono Q with a fold purification of 21.1 and a recovery of 49%. The molecular weight of the enzyme was 430,000 Da by gel filtration and 72,000 Da by sodium dodecyl sulfate polyacrylamide gel electrophoresis, suggesting that it was a hexamer. The activity of this purified enzyme was optimal at pH 4.5 and 35 °C. The temperature stability was under 55 °C, and the pH stability was 4.0~5.0. The enzyme exhibited an apparent K m of 19.5 μmol/l and a V max of 109 μmol urea/mg·min at 35 °C and pH 4.5. When incubating two different kinds of Chinese rice wine with the enzyme (0.08 U/ml) at 35 °C for 7 days, over 85% of urea was decomposed, and at 20 °C, above 78% was removed. The result showed that the enzyme is applicable to elimination of urea in Chinese rice wine.  相似文献   

12.
In this study, a carbon paste electrode modified with (E)‐2‐((2‐chlorophenylimino)methyl)benzene‐1,4‐diol (CD) and titanium dioxide nanoparticles (TiO2) was used to prepare a novel electrochemical sensor. The objective of this novel electrode modification was to seek new electrochemical performances for the detection of isoproterenol (IP) in the presence of acetaminophen (AC) and folic acid (FA). Initially, cyclic voltammetry (CV) was used to investigate the redox properties of this modified electrode at various scan rates. In the following, the mediated oxidation of IP at the modified electrode was described. The results showed an efficient catalytic activity of the electrode for the electrooxidation of IP, which leads to a reduction in its overpotential by more than 235 mV. The value of the electron transfer coefficient (α), catalytic rate constant (kh) and diffusion coefficient (D) were calculated for IP, using electrochemical approaches. Based on differential pulse voltammetry (DPV), the oxidation of IP exhibited a dynamic range between 0.5 and 1000 µM and a detection limit (3σ) of 0.47 µM. DPV was used for simultaneous determination of IP, AC and FA at the modified electrode. Finally, this method was used for the determination of IP in real samples, using standard addition method.  相似文献   

13.
The intensification of total phenolic compound (TPC) extraction from blood orange peels was optimized using a novel green infrared-assisted extraction technique (IRAE, Ired-Irrad®) and compared to the conventional extraction using a water bath (WB). Response surface methodology (RSM) allowed for the optimization of ethanol concentration (E), time (t), and temperature (T) in terms of extracted TPC and their antiradical activity, for both WB extraction and IRAE. Using WB extraction, the multiple response optimums as obtained after 4 h at 73 °C and using 79% ethanol/water were 1.67 g GAE/100 g for TPC and 59% as DPPH inhibition percentage. IRAE increased the extraction of TPC by 18% using 52% ethanol/water after less than 1 h at 79 °C. This novel technology has the advantage of being easily scalable for industrial usage. HPLC analysis showed that IRAE enhanced the recovery of gallic acid, resveratrol, quercetin, caffeic acid, and hesperidin. IR extracts exhibited high bioactivity by inhibiting the production of Aflatoxin B1 by 98.9%.  相似文献   

14.
The complex [Ba3(sip)2(H2O)9] · H2O ( 1 ) (NaH2sip = 5‐sulfoisophthalic acid sodium) was synthesized and characterized by single‐crystal X‐ray diffraction. Structural determination reveals that the asymmetric unit in 1 contains two crystallographically independent BaII atoms. The Ba1 atom is eight‐coordinate with distorted monocapped pentagonal bipyramidal arrangement, whereas the Ba2 atom is ten‐coordinated with bicapped tetragonal prismatic arrangement. The two carboxylate groups of sip3– adopt different coordination modes, μ2‐η11‐bridging, and μ2‐η21‐bridging. The sulfonate group coordinates to three different BaII atoms in a tridentate μ3 mode to generate a ladder‐like one‐dimensional chain. The chains are connected by μ2‐η11‐bridging carboxylate groups to form a wave‐like two‐dimensional network, which are further linked by sip3– anions to generate a three‐dimensional structure. The thermal stability and luminescence properties of complex 1 were also investigated.  相似文献   

15.
12α, 13-Dihydroxyolean-3-oxo-28-oic acid (1), a new pentacyclic triterpene, was isolated from Scheffiera venulosa (Wight et Am.) Harms through a bioassay-guided fractionafion procedure, together with the known oleanonic acid (2) as a new cell cycle inhibitor. Structures were estabfished by spectroscopy. Compound 2 inhibited the proliferation of K562 cells with the IC50 value of 0.13 lamol/mL by the SRB method and inhibited the cell cycle of tsFT210 cells at the G0/G1 phase at the concentration higher than 10 μg/mL.  相似文献   

16.
A series of 3D d–f heterometallic coordination polymers, {[Ln2Zn(Pzdc)4(H2O)6] · 2H2O}n [Ln = La ( 1 ), Pr ( 2 ), Nd ( 3 ), Sm ( 4 ), Eu ( 5 ), Gd ( 6 ), Tb ( 7 ), Dy ( 8 )] (H2Pzdc = 2,3‐pyrazine dicarboxylic acid), were synthesized by one‐pot reactions under hydrothermal conditions. X‐ray crystallographical analysis and powder X‐ray diffraction analysis reveal that the complexes 1 – 8 are isostructural and adopt a multi‐parallel quadrilateral channel network structure with {4.6 · 2}2{4 · 2.6 · 2.8 · 2}{6 · 3}2{6 · 5.8}2 topology, in which the central LnIII ion is nine‐coordinate by four oxygen atoms and two nitrogen atoms from four ligands and three oxygen atoms from three coordinated H2O molecules and the central ZnII ion is six‐coordinate by four oxygen atoms and two nitrogen atoms from four ligands. Moreover, the photophysical properties related to the electronic transition for complexes 4 , 5 , 7 , and 8 were investigated by the excitation and emission spectra as well as the emission lifetimes.  相似文献   

17.
Reactions of pyrazine‐2,3‐dicarboxylic acid (H2pzdc), cobalt nitrate and lanthanide (Ln) oxide under hydrothermal conditions result in four new 3d‐4f heterometal coordination polymers, namely, [Ln2Co(pzdc)4(H2O)6] · 2H2O [Ln = La ( 1 ), Pr ( 2 ), Eu ( 3 ) and Gd ( 4 )]. All compounds were characterized by elemental analysis, infrared spectroscopy, thermal gravimetric analysis, and X‐ray diffraction. The compounds exhibit a three‐dimensional (3D) brick‐like structure with rectangular‐shaped nano‐scale channels along a axis direction, made up of wave‐like layers containing [Ln(pzdc)]+ units, which are connected by one‐dimensional (1D) chain of [Co(pzdc)2]2–. The catalytic properties of compounds 1 and 3 were investigated in the synthesis of cyanohydrins at room temperature under solventless conditions. They showed similar catalytic activities with very high conversions of benzaldehyde and high selectivity towards cyanohydrin. The control experiment without addition of the coordination polymers only reached 16 % conversion. Other aldehydes could also be converted totally under shorter reaction times also with very high selectivities for the corresponding cyanohydrins. Compound 1 could also be recycled in another catalytic cycle.  相似文献   

18.
By self‐assembly of a Salamo‐type ligand H2L [H2L = 1,2‐bis(3‐methoxysalicylideneaminooxy)ethane] with Ni(OAc)2 · 4H2O, Ce(NO3)3 · 6H2O, and H2bdc (H2bdc = terephthalic acid), a novel NiII‐CeIII heterometallic complex, [{Ni(L)Ce(NO3)2(CH3OH)(DMF)}2(bdc)], was obtained. Two crystallographically equivalent [Ni(L)Ce(NO3)2(CH3OH)(DMF)] moieties lie in the inversion center, and are linked by one bdc2– ligand leading to a heterotetranuclear dimer, in which the carboxylato group bridges the NiII and CeIII atoms. Moreover, the photophysical properties of the NiII‐CeIII complex were studied.  相似文献   

19.
A coordination polymer [Ba(pcmb)(H2O)2.5] ( 1 ) was obtained by self‐assembly of the corresponding metal carbonate with a flexible ligand, p‐(carboxyl‐methyloxy)‐benzenecarboxylic acid (H2pcmb), and its structure was determined by single‐crystal X‐ray diffraction studies. The result revealed that complex 1 has a three‐dimensional structure, in which the barium(II) atom takes a distorted eight‐coordinate bicapped anti‐prism arrangement. The pcmb2– anion acts as a μ4‐bridge ligand, in which carboxylate groups adopt monodentate and μ3η2:η1‐bridging two different coordination models to generate a three‐dimensional network structure. The luminescence property and thermal stability of 1 were investigated.  相似文献   

20.
The hydrothermal reactions of Ln2O3 (Ln = Nd and Eu) with pyridine‐2,5‐dicarboxylic acid (H2pydc) resulted in the formation of two isomorphic three‐dimensional (3D) polymeric LnIII complexes, [Ln(pydc)(nic)·H2O]n (Ln = Nd( 1 ) and Eu( 2 )), in which nic (nicotinate; also named as pyridine‐2‐carboxylic acid) might have been formed from the pydc ligands through the C–C bond cleavage and CO2 molecules releasing. Pydc ligands bridge lanthanide centers to form the three‐dimensional framework featuring hexagonal channels along the axis a which are occupied by bridging nic anions and mono‐coordinated water molecules. From the topological point of view, two three‐dimensional nets are binodal with six‐ and three‐connected nodes, which display a distorted rutile (4.62)2(42·610·83) topology. Magnetic measurements (2‐300 K) reveal that all polymers possess weak antiferromagnetic property. A strong fluorescence emission spectrum of compound 2 was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号