首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Software-defined networks (SDN) has emerged with the capability to program in order to enhance flexibility, management, and testing of new ideas in the next generation of networks by removing current network limitations. Network virtualization and functionalization are critical elements supporting the delivery of future network services, especially in 5G networks. With the integration of virtualization and functionalization, network resources can be provisioned on-demand, and network service functions can be composed and chained dynamically to cater to various requirements. 5G networks are expected to rely heavily on SDN, which has been widely applied in core network design. To have a software-defined 5G network, not only is new spectrum and interface needed from SDN, but also a programmable and efficient hardware infrastructure is required. Admittedly, hardware components and infrastructure play an important role in supporting 5G networks. In other words, the software-defined 5G network data plane must have the required flexibility and programmability to support upcoming needs and technologies. Technological solutions need to respond to actual requests in infrastructure. Packet parsers in the data plane of software-defined 5G networks are one of the most important components because of the variation in the type of network headers and protocols. Each SDN switch needs to identify headers for processing input packets in the data plane, where the packet parser operates. Multiple implementations of packet parsers have been done on different substrates that occupy large hardware resources and areas on chip. However, they are not suitable for software-defined 5G networks. Certain architectures have been presented for packet parsing, aimed at accelerating the process of header parsing, however no attention has been paid toward reducing the area and the volume of the needed hardware resources and programmability in the data plane. This paper presents a new and efficient architecture for packet parsers on Field Programmable Gate Arrays (FPGA), called Efficient FPGA Packet Parser (EFPP) in a designed software-defined 5G network. This architecture emphasizes the removal of Ternary Content Addressable Memory (TCAM) to decrease hardware resources and efficiency in the data plane. Moreover, this architecture uses the chip’s processing speed and reconfiguration capabilities to support new protocols and network headers while maintaining flexibilities on software-defined 5G networks. EFPP is applied to chips on FPGA Xilinx ZedBoard Zynq, and the resources consumed around 7.5% LookUp Table, 1.9% Flip-Flops, and 5.8% of the memory. EFPP was also more area efficient. According to our results, EFPP would reduce the area and volume of hardware compared to other peer works.  相似文献   

2.
Abstract

A techno-economic study on the outside plant costs of fiber-to-the-X infrastructures is presented in this article. Standardized passive optical network and active optical network technologies, implemented in fiber-to-the-home architectures, are presented/compared in terms of costs. Future architectures based on passive optical networks are investigated, their outside plant infrastructure, and corresponding costs are reviewed. Cost comparisons of fiber-to-the-X infrastructures reveal significant differences. Besides fiber-to-the-node being the less costly, it is shown that the cost of high splitting ratio passive optical network fiber-to-the-home infrastructures is not increasing linearly with the splitting ratio. The highest splitting ratio is not always the one with the largest savings percentage. Referring to current and future fiber-to-the-home access network architectures/technologies, the flexibility of wavelength division multiplexing/time division multiplexing passive optical networks is estimated to reach a 40% reduction in outside plant cost compared with the home run architecture.  相似文献   

3.
4.
Cognitive Radio (CR) networks are envisioned as a key empowering technology of the fifth-generation (5G) wireless communication networks, which solves the major issues of 5G, like high-speed data transmission, seamless connectivity, and increased demand for mobile data. Another significant characteristic of the 5G network is green communications, as energy consumption from the communication field is predicted to rise remarkably by the year 2030. In this work, we are concerned about energy-related issues and propose a cooperation-based energy-aware reward scheme (CEAR) for next-generation green CR networks. The proposed CEAR scheme is based on the antenna and temporal diversity of the primary users (PUs). For providing the service to the PUs, the users of another network called cognitive users (CUs) work as a cooperative relay node, and, in return, they get more spectrum access opportunities as a reward from the primary network. The CUs with delay-tolerant data packets take a cooperative decision by recognizing the availability and traffic load of PUs, channel state information, and data transmission requirements. We utilize the optimal stopping protocol for solving the decision-making problem and use the backward induction method to obtain the optimal cooperative solution. The simulation results reveal notable enhancements in energy efficiency (EE) of CUs compared with other cooperative schemes. The proposed CEAR scheme is more energy-efficient for ultra-dense network deployment because results show that the CU’s EE, spectral efficiency (SE), and throughput improved with the increase of PUs.  相似文献   

5.
Future communication networks must address the scarce spectrum to accommodate extensive growth of heterogeneous wireless devices. Efforts are underway to address spectrum coexistence, enhance spectrum awareness, and bolster authentication schemes. Wireless signal recognition is becoming increasingly more significant for spectrum monitoring, spectrum management, secure communications, among others. Consequently, comprehensive spectrum awareness on the edge has the potential to serve as a key enabler for the emerging beyond 5G (fifth generation) networks. State-of-the-art studies in this domain have (i) only focused on a single task – modulation or signal (protocol) classification – which in many cases is insufficient information for a system to act on, (ii) consider either radar or communication waveforms (homogeneous waveform category), and (iii) does not address edge deployment during neural network design phase. In this work, for the first time in the wireless communication domain, we exploit the potential of deep neural networks based multi-task learning (MTL) framework to simultaneously learn modulation and signal classification tasks while considering heterogeneous wireless signals such as radar and communication waveforms in the electromagnetic spectrum. The proposed MTL architecture benefits from the mutual relation between the two tasks in improving the classification accuracy as well as the learning efficiency with a lightweight neural network model. We additionally include experimental evaluations of the model with over-the-air collected samples and demonstrate first-hand insight on model compression along with deep learning pipeline for deployment on resource-constrained edge devices. We demonstrate significant computational, memory, and accuracy improvement of the proposed model over two reference architectures. In addition to modeling a lightweight MTL model suitable for resource-constrained embedded radio platforms, we provide a comprehensive heterogeneous wireless signals dataset for public use.  相似文献   

6.
There has been a rich interplay in recent years between (i) empirical investigations of real-world dynamic networks, (ii) analytical modeling of the microscopic mechanisms that drive the emergence of such networks, and (iii) harnessing of these mechanisms to either manipulate existing networks, or engineer new networks for specific tasks. We continue in this vein, and study the deletion phenomenon in the web by the following two different sets of websites (each comprising more than 150,000 pages) over a one-year period. Empirical data show that there is a significant deletion component in the underlying web networks, but the deletion process is not uniform. This motivates us to introduce a new mechanism of preferential survival (PS), where nodes are removed according to the degree-dependent deletion kernel, D(k)∝kα, with α≥0. We use the mean-field rate equation approach to study a general dynamic model driven by Preferential Attachment (PA), Double PA (DPA), and a tunable PS (i.e., with any α>0), where c nodes (c<1) are deleted per node added to the network, and verify our predictions via large-scale simulations. One of our results shows that, unlike in the case of uniform deletion (i.e., where α=0), the PS kernel when coupled with the standard PA mechanism, can lead to heavy-tailed power-law networks even in the presence of extreme turnover in the network. Moreover, a weak DPA mechanism, coupled with PS, can help to make the network even more heavy-tailed, especially in the limit when deletion and insertion rates are almost equal, and the overall network growth is minimal. The dynamics reported in this work can be used to design and engineer stable ad hoc networks and explain the stability of the power-law exponents observed in real-world networks.  相似文献   

7.
An opportunistic routing problem in a cognitive radio ad hoc network is investigated with an aim to minimize the interference to primary users (PUs) and under the constraint of a minimum end-to-end data rate for secondary users (SUs). Both amplify-and-forward (AF) and decode-and-forward (DF) relaying techniques are considered for message forwarding by SU nodes in the network. Unlike popular transmit power control based solutions for interference management in cognitive radio networks, we adopt a cross layer approach. The optimization problem is formulated as a joint power control, channel assignment and route selection problem. Next, closed form expression for transmission power is derived and corresponding channel selection scheme and routing metric are designed based on this solution. The proposed route selection schemes are shown to depend not only on gains of the interference channels between SUs and PUs but also on the values of the spectrum sensing parameters at the SU nodes in the network. Two distributed routing schemes are proposed based on our analysis; (i) optimal_DF and (ii) suboptimal_AF. The routing schemes could be implemented using existing table driven as well as on demand routing protocols. Extensive simulation results are provided to evaluate performance of our proposed schemes in random multihop networks. Results show significant reduction in PUs’ average interference experience and impressive performance as opportunistic routing schemes can be achieved by our schemes compared to traditional shortest path based routing schemes. Performance improvement is also reported over prominent recent schemes.  相似文献   

8.
The mathematical framework for small-world networks proposed in a seminal paper by Watts and Strogatz sparked a widespread interest in modeling complex networks in the past decade. However, most of research contributing to static models is in contrast to real-world dynamic networks, such as social and biological networks, which are characterized by rearrangements of connections among agents. In this paper, we study dynamic networks evolved by nonlinear preferential rewiring of edges. The total numbers of vertices and edges of the network are conserved, but edges are continuously rewired according to the nonlinear preference. Assuming power-law kernels with exponents α and β, the network structures in stationary states display a distinct behavior, depending only on β. For β>1, the network is highly heterogeneous with the emergence of starlike structures. For β<1, the network is widely homogeneous with a typical connectivity. At β=1, the network is scale free with an exponential cutoff.  相似文献   

9.
With the rapid new advancements in technology, there is an enormous increase in devices and their versatile need for services. Fifth-generation (5G) cellular networks (5G-CNs) with network slicing (NS) have emerged as a necessity for future mobile communication. The available network is partitioned logically into multiple virtual networks to provide an enormous range of users’ specific services. Efficient resource allocation methods are critical to delivering the customers with their required Quality of Service (QoS) priorities. In this work, we have investigated a QoS based resource allocation (RA) scheme considering two types of 5G slices with different service requirements; (1) enhanced Mobile Broadband (eMBB) slice that requires a very high data rate and (2) massive Machine Type Communication (mMTC) slice that requires extremely low latency. We investigated the device-to-device (D2D) enabled 5G-CN model with NS to assign resources to users based on their QoS needs while considering the cellular and D2D user’s data rate requirements. We have proposed a Distributed Algorithm (DA) with edge computation to solve the optimization problem, which is novel as edge routers will solve the problem locally using the augmented Lagrange method. They then send this information to the central server to find the global optimum solution utilizing a consensus algorithm. Simulation analysis proves that this scheme is efficient as it assigns resources based on their QoS requirements. This scheme is excellent in reducing the central load and computational time.  相似文献   

10.
The rapid development road map of 6G networks has posed a new set of challenges to both industrial and academic sectors. On the one hand, it needs more disruptive technologies and solutions for addressing the threefold issues including enhanced mobile broadband, massive machine-type communications, and ultra-reliable and low-latency communications. On the other hand, the ever-massive number of mobile users and Internet of Things devices conveys the huge volume of traffic throughout the 6G networks. In this context, caching is one of the most feasible technologies and solutions that does not require any system architecture changes nor costly investments, while significantly improve the system performance, i.e., quality of service and resource efficiency. Ground caching models deployed at macro base stations, small-cell base stations, and mobile devices have been successfully studied and currently extended to the air done by unmanned aerial vehicles (UAVs) to deal with the challenges of 6G networks. This paper provides a comprehensive survey of UAV caching models, techniques, and applications in 6G networks. In particular, we first investigate the entire picture of caching models moving from the ground to the air as well as the related surveys on UAV communications. Then, we introduce a typical UAV caching system and describe how it works in connection with all types of the transceivers, end users, and applications and services (A&Ss). After that, we present the recent advancements and analyses of the UAV caching models and common system performance metrics. Furthermore, the UAV caching with assisted techniques, UAV caching-enabled mechanisms, and UAV caching A&Ss are discussed to demonstrate the role of UAV caching system in 6G networks. Finally, we highlight the ongoing challenges and potential research directions toward UAV caching in 6G networks.  相似文献   

11.
Peter Grindrod  Mark Parsons 《Physica A》2011,390(21-22):3970-3981
The plethora of digital communication technologies, and their mass take up, has resulted in a wealth of interest in social network data collection and analysis in recent years. Within many such networks the interactions are transient: thus those networks evolve over time. In this paper we introduce a class of models for such networks using evolving graphs with memory dependent edges, which may appear and disappear according to their recent history. We consider time discrete and time continuous variants of the model. We consider the long term asymptotic behaviour as a function of parameters controlling the memory dependence. In particular we show that such networks may continue evolving forever, or else may quench and become static (containing immortal and/or extinct edges). This depends on the existence or otherwise of certain infinite products and series involving age dependent model parameters. We show how to differentiate between the alternatives based on a finite set of observations. To test these ideas we show how model parameters may be calibrated based on limited samples of time dependent data, and we apply these concepts to three real networks: summary data on mobile phone use from a developing region; online social-business network data from China; and disaggregated mobile phone communications data from a reality mining experiment in the US. In each case we show that there is evidence for memory dependent dynamics, such as that embodied within the class of models proposed here.  相似文献   

12.
The physics information of four specific airline flight networks in European Continent, namely the Austrian airline, the British airline, the France-Holland airline and the Lufthhansa airline, was quantitatively analyzed by the concepts of a complex network. It displays some features of small-world networks, namely a large clustering coefficient and small average shortest-path length for these specific airline networks. The degree distributions for the small degree branch reveal power law behavior with an exponent value of 2-3 for the Austrian and the British flight networks, and that of 1-2 for the France-Holland and the Lufthhansa airline flight networks. So the studied four airlines are sorted into two classes according to the topology structure. Similarly, the flight weight distributions show two kinds of different decay behavior with the flight weight: one for the Austrian and the British airlines and another for the France-Holland airline and the Lufthhansa airlines. In addition, the degree-degree correlation analysis shows that the network has disassortative behavior for all the value of degree k, and this phenomenon is different from the international airline network and US airline network. Analysis of the clustering coefficient (C(k)) versus k, indicates that the flight networks of the Austrian Airline and the British Airline reveal a hierarchical organization for all airports, however, the France-Holland Airline and the Lufthhansa Airline show a hierarchical organization mostly for larger airports. The correlation of node strength (S(k)) and degree is also analyzed, and a power-law fit S(k)∼k1.1 can roughly fit all data of these four airline companies. Furthermore, we mention seasonal changes and holidays may cause the flight network to form a different topology. An example of the Austrian Airline during Christmas was studied and analyzed.  相似文献   

13.
14.
This paper gives an overview and background of optical access network deployment in Croatia. Optical access network development in Croatia has been put into a global as well as in the European Union context. All the challenges and the driving factors for optical access networks deployment are considered. Optical access network architectures that have been deployed by most of the investors in Croatian telecommunication market are presented, as well as the architectures that are in early phase of deployment. Finally, an overview on current status of mobile networks of the fifth generation and Internet of Things is given.  相似文献   

15.
We study the effects of the degree-degree correlations on the pressure congestion J when we apply a dynamical process on scale free complex networks using the gradient network approach. We find that the pressure congestion for disassortative (assortative) networks is lower (bigger) than the one for uncorrelated networks which allow us to affirm that disassortative networks enhance transport through them. This result agree with the fact that many real world transportation networks naturally evolve to this kind of correlation. We explain our results showing that for the disassortative case the clusters in the gradient network turn out to be as much elongated as possible, reducing the pressure congestion J and observing the opposite behavior for the assortative case. Finally we apply our model to real world networks, and the results agree with our theoretical model.  相似文献   

16.
With rapid growth of the Internet, bandwidth demand for data traffic is continuing to explode. In addition, emerging and future applications are becoming more and more network centric. With the proliferation of data communication platforms and data-intensive applications (e.g. cloud computing), high-bandwidth materials such as video clips dominating the Internet, and social networking tools, a networking technology is very desirable which can scale the Internet’s capability (particularly its bandwidth) by two to three orders of magnitude. As the limits of Moore’s law are approached, optical mesh networks based on wavelength-division multiplexing (WDM) have the ability to satisfy the large- and scalable-bandwidth requirements of our future backbone telecommunication networks. In addition, this trend is also affecting other special-purpose systems in applications such as mobile platforms, automobiles, aircraft, ships, tanks, and micro unmanned air vehicles (UAVs) which are becoming independent systems roaming the sky while sensing data, processing, making decisions, and even communicating and networking with other heterogeneous systems. Recently, WDM optical technologies have seen advances in its transmission speeds, switching technologies, routing protocols, and control systems. Such advances have made WDM optical technology an appealing choice for the design of future Internet architectures. Along these lines, scientists across the entire spectrum of the network architectures from physical layer to applications have been working on developing devices and communication protocols which can take full advantage of the rapid advances in WDM technology. Nevertheless, the focus has always been on large-scale telecommunication networks that span hundreds and even thousands of miles. Given these advances, we investigate the vision and applicability of integrating the traditionally large-scale WDM optical networks into miniaturized mobile platforms such as UAVs. We explain the benefits of WDM optical technology for these applications. We also describe some of the limitations of WDM optical networks as the size of a vehicle gets smaller, such as in micro-UAVs, and study the miniaturization and communication system limitations in such environments.  相似文献   

17.
M.J. Krawczyk 《Physica A》2011,390(13):2611-2618
It was demonstrated recently that the line graphs are clustered and assortative. These topological features are known to characterize some social networks [M.E.J. Newman, Y. Park, Why social networks are different from other types of networks, Phys. Rev. E 68 (2003) 036122]; it was argued that this similarity reveals their cliquey character. In the model proposed here, a social network is the line graph of an initial network of families, communities, interest groups, school classes and small companies. These groups play the role of nodes, and individuals are represented by links between these nodes. The picture is supported by the data on the LiveJournal network of about 8×106 people.  相似文献   

18.
The structural properties of the subway network are crucial in effective transportation in cities. This paper presents an information perspective of navigation in four different subway networks: New York City, Paris, Barcelona and Moscow. We addressed our study to investigate what is that makes it complicated to navigate in these kinds of networks and we carried out a comparison between them and their intrinsic constraints. Our methodological approach is based on a set of cost/efficiency indicators which are defined in the complex networks literature. We find that the overall complexity in finding stations measured by the average search information S linearly increases as a function of the network size N. The direct implication of this finding is that from these basic levels of required information, the average value H(k) can be represented as a function of the node degree k. Finally, through analyzing subway networks in space P, we reveal the existing service modularity among subway routes using a rescaled expression of S.  相似文献   

19.
ABSTRACT

The offering of demanding telecommunication services as promised by the 5G specifications raise the necessity for high capacity, flexible, adaptive, and power conserving fronthaul. Toward this goal, the role of the passive optical network which is responsible for interconnecting the central office (CO) with the cell-sites is crucial. Among the latest related technologies that need to be integrated in the context of the next generation passive optical networks (NGPONs), the most promising for increasing the provided bandwidth, is the optical spatial multiplexing. In this paper, we present the key 5G technologies, focusing on spatial division multiplexing, which constitutes the main innovation of the blueSPACE 5G Infrastructure Public Private Partnership (5G PPP) project. Exploiting the recent developments on multicore fibers (MCFs), optical beamforming networks (OBFNs), analog radio over fiber (ARoF), and spatial-spectral resources granularity in the context of Spectrally Spatially Flexible Optical Networks (SS-FONs), we describe a complete approach for the 5G fronthaul, emphasizing on the efficient allocation of optical resources while aiming at minimizing energy consumption. The modeled optimization problem is thoroughly presented, and the introduced scheme is evaluated through a real-world based simulation scenario, exhibiting quite promising results.  相似文献   

20.
The heterogeneity nature of networks is the most eminent characteristic in 5G vehicular cognitive radio networks across complex radio environments. Since multiple communicating radios may be in motion at the same time in a vehicle. So, group mobility is the most prominent characteristic that requires to be a deep investigation. Therefore, different communication radios that are moving on a train/bus needed to select the networks simultaneously. Without considering the group mobility feature, there is a possibility that the same network may be selected by each moving node and cause congestion in a particular network. To overcome this problem, a novel network selection technique considering the group mobility feature is proposed to improve the throughput of the network. In this work, a 5G vehicular cognitive radio network scenario is also realized using USRP-2954 and LabVIEW communications system design suite testbed. The performance metrics like transmission delay, packet loss rate, reject rate and, channel utilization for vehicular nodes, are gained to analyze the proposed technique in vehicular cognitive radio networks environment. The proposed technique demonstrates a remarkable improvement in channel utilization for vehicular nodes and outperformed conventional schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号