首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the last decade, silica monolithic capillaries have focused more and more attention on miniaturized separation techniques like capillary electrochromatography (CEC), nano-liquid chromatography (nano-LC) and chip electrochromatography owing to their unique chromatographic properties and their simplified preparation compared with packed columns. They are synthesized according to a sol-gel multi-step process that includes, after a gelation step at 40 degrees C leading to the formation of the macropores network and the silica skeleton, a post-gelation step (hydrothermal treatment at 120 degrees C in basic medium) that allows to tailor the mesopores and finally a calcination or a washing step to remove remaining polymers. In order to reduce the synthesis time, the number of synthesis steps and above all the temperature synthesis, to adapt the synthesis of such silica monoliths in polymeric microsystem devices, we extensively studied the influence of the hydrothermal treatment and its duration on textural (pore size distribution) and chromatographic properties (retention, efficiency) of in situ-synthesized capillary monoliths in nano-LC and CEC. This study was performed on pure silica and octyl chains grafted silica monoliths. Untreated monoliths show small pores (<6 nm), whereas hydrothermally treated monoliths exhibit medium and large mesopores (8-17 nm). It was demonstrated that the hydrothermal treatment at 120 degrees C was not necessary for pure silica monolithic capillaries dedicated to normal phase liquid chromatography or hydrophilic interaction liquid chromatography (HILIC) and electrochromatography: the suppression of the hydrothermal treatment did not impair efficiencies in CEC and in nano-LC but contributed to increase in retention factors. Minimal plate heights of ca. 5 microm in CEC and 6 microm in nano-LC were obtained with or without hydrothermal treatment with bare silica. In the same way, the hydrothermal treatment was not necessary for grafted silica monoliths only dedicated to CEC. However, the results clearly indicate that the hydrothermal treatment becomes essential before grafting in order to preserve the efficiency of the monolithic silica capillaries dedicated to nano-LC: in this particular case, the suppression of the hydrothermal treatment leads approximately to a loss of a factor two in efficiency.  相似文献   

2.
Methacrylate-ester-based monoliths containing quaternary ammonium groups were prepared in situ in capillary columns and in simultaneous experiments in vials, employing thermal initiation. The chromatographic properties of the monoliths were determined with capillary electrochromatography (CEC), and their morphology was studied with mercury-intrusion porosimetry on the bulk materials. Materials with different, well repeatable pore-size distributions could be prepared. A satisfactory column-to-column and run-to-run repeatability was obtained for the electro-osmotic mobility, the retention characteristics (k-values) and the efficiency on the columns prepared and tested in the CEC mode. A relatively high electro-osmotic flow was observed in the direction of the positive electrode. The electro-osmotic mobility was found to be influenced only marginally by mobile-phase parameters such as the pH, ionic strength, and acetonitrile content. The retention behavior of the monolithic columns was similar to that of columns packed with C18-modified silica particles. Columns could be prepared with optimum plate heights ranging from 6 microm for unretained compounds to 20 microm for well retained (k=2.5) polyaromatic hydrocarbons. However, for specific analytes a - still unexplained - lower chromatographic column efficiency was observed.  相似文献   

3.
Monolithic silica columns with surface-bound octadecyl (C18) moieties have been prepared by a sol-gel process in 100 microm ID fused-silica capillaries for reversed-phase capillary electrochromatography of neutral and charged species. The reaction conditions for the preparation of the C18-silica monoliths were optimized for maximum surface coverage with octadecyl moieties in order to maximize retention and selectivity toward neutral and charged solutes with a sufficiently strong electroosmotic flow (> 2 mm/s) to yield rapid analysis time. Furthermore, the effect of the pore-tailoring process on the silica monoliths was performed over a wide range of treatment time with 0.010 M ammonium hydroxide solution in order to determine the optimum time and conditions that yield mesopores of narrow pore size distribution that result in high separation efficiency. Under optimum column fabrication conditions and optimum mobile phase composition and flow velocity, the average separation efficiency reached 160 000 plates/m, a value comparable to that obtained on columns packed with 3 microm C18-silica particles with the advantages of high permeability and virtually no bubble formation. The optimized monolithic C18-silica columns were evaluated for their retention properties toward neutral and charged analytes over a wide range of mobile phase compositions. A series of dimensionless retention parameters were evaluated and correlated to solute polarity and electromigration property. A dimensionless mobility modulus was introduced to describe charged solute migration and interaction behavior with the monolithic C18-silica in a counterflow regime during capillary electrochromatography (CEC )separations. The mobility moduli correlated well with the solute hydrophobic character and its charge-to-mass ratio.  相似文献   

4.
Silica monoliths coated with functionalised latex particles have been prepared for use in monolithic ion-exchange capillary electrochromatography (IE-CEC) for the separation of inorganic anions. The ion-exchange monoliths were prepared using 70 nm quaternary ammonium, anion-exchange latex particles, which were bound electrostatically to a monolithic silica skeleton synthesised in a fused silica capillary. The resulting stationary phases were characterised in terms of their chromatographic performance and capacity. The capacity of a 50 microm diameter 25 cm latex-coated silica monolith was found to be 0.342 nanoequivalents and 80,000 theoretical plates per column were typically achieved for weakly retained anions, with lower efficiency being observed for analytes exhibiting strong ion-exchange interaction with the stationary phase. The electroosmotic flow (EOF) was reversed after the latex-coating was applied (-25.96 m2 V(-1) s(-1), relative standard deviation (RSD) 2.8%) and resulted in anions being separated in the co-EOF mode. Ion-exchange interactions between the analytes and the stationary phase were manipulated by varying the ion-exchange selectivity coefficient and the concentration of a competing ion (phosphate or perchlorate) present in the electrolyte. Large concentrations of competing ion (greater than 1M phosphate or 200 mM perchlorate) were required to completely suppress ion-exchange interactions, which highlighted the significant retention effects that could be achieved using monolithic columns compared to open tubular columns, without the problems associated with particle-packed columns. The latex-coated silica monoliths were easily produced in bulk quantities and performed reproducibly in acidic electrolytes. The high permeability and beneficial phase ratio makes these columns ideal for micro-LC and preconcentration applications.  相似文献   

5.
Qin F  Xie C  Yu Z  Kong L  Ye M  Zou H 《Journal of separation science》2006,29(10):1332-1343
Monolithic materials have become a well-established format for stationary phases in the field of capillary electrochromatography. Four types of monoliths, namely particle-fixed, silica-based, polymer-based, and molecularly imprinted monoliths, have been utilized as enantiomer-selective stationary phases in CEC. This review summarizes recent developments in the area of monolithic enantiomer-selective stationary phases for CEC. The preparative procedure and the characterization of these columns are highlighted. In addition, the disadvantages and limitations of different monolithic enantiomer-selective stationary phases in CEC are briefly discussed.  相似文献   

6.
We examined the use of monolithic capillary columns prepared via ring-opening metathesis polymerization (ROMP) for peptide separation in voltage-assisted capillary LC (voltage-assisted CLC). In order to demonstrate their potential for peptide separation, ROMP-derived monoliths with RP properties were prepared. The preparation procedure of monoliths was transferred from ROMP monoliths optimized for CLC. ROMP monoliths were synthesized within the confines of 200 microm id fused-silica capillaries with a length of 37 cm. After optimization of the chromatographic conditions, the separation performance was tested using a well-defined set of artificial peptides as well as two peptidic mixtures resulting from a tryptic digest of BSA as well as a collagenase digest of collagen. ROMP monoliths showed comparable performance to other monolithic separation media in voltage-assisted CLC published so far. Therefore, we conclude that by optimizing the composition of the ROMP monoliths as well as by using the controlled manner of their functionalization, ROMP monoliths bear a great potential in CLC and CEC.  相似文献   

7.
Microwave irradiation can provide a viable alternative to the traditional means such as ultraviolet light and thermal initiation for the preparation of monolithic capillary columns. Polystyrene-based monolithic stationary phases were prepared in situ in fused-silica capillaries and simultaneously in vials. The column permeability, electrophoretic and chromatographic behavior were evaluated using pressure-assisted capillary electrochromatography (pCEC), capillary electrochromatography (CEC) and low pressure liquid chromatography (LPLC). With an optimal monolithic material, the largest theoretical plates for preparing the column could be close to 18,000 plates/m for thiourea in the mode of pCEC. Furthermore, the influence of the composition of the porogenic solvents (toluene/isooctane) on the morphology of organic-based monoliths [poly(styrene-divinylbenzene-methacrylic acid)] was systematically studied with mercury intrusion porosimetry and scanning electron microscopy. The monoliths which were prepared with a high content of isooctane had a bigger pore size and better permeability, and hence resulted in a faster separation.  相似文献   

8.
Bedair M  El Rassi Z 《Electrophoresis》2002,23(17):2938-2948
A novel monolithic stationary phase having long alkyl chain ligands (C17) was introduced and evaluated in capillary electrochromatography (CEC) of small neutral and charged species. The monolithic stationary phase was prepared by the in situ copolymerization of pentaerythritol diacrylate monostearate (PEDAS) and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) in a ternary porogenic solvent consisting of cyclohexanol/ethylene-glycol/water. While AMPS was meant to support the electroosmotic flow (EOF) necessary for transporting the mobile phase through the monolithic capillary, the PEDAS was introduced to provide the nonpolar sites for chromatographic retention. Monolithic columns at various EOF velocities were readily prepared by conveniently adjusting the amount of AMPS in the polymerization solution as well as the composition of the porogenic solvent. The monolithic stationary phases thus obtained exhibited reversed-phase chromatography behavior toward neutral solutes and yielded a relatively strong EOF. For charged solutes (e.g., dansyl amino acids), nonpolar as well as electrostatic interaction/repulsion with the monoliths were observed in addition to electrophoretic migration. Therefore, for charged solutes, selectivity and migration can be readily manipulated by changing various parameters including the nature of the monolith and the composition of the mobile phase (e.g., pH, ionic strength and organic modifier). Ultrafast separation on the time scale of seconds of 17 different charged and neutral pesticides and metabolites were performed using short capillary columns of 8.5 cm x 100 microm ID.  相似文献   

9.
Bedair M  El Rassi Z 《Electrophoresis》2004,25(23-24):4110-4119
This review article summarizes the advances made over the last two years in polymeric monoliths for capillary electrochromatography (CEC). It covers the scientific literature in the period extending form the second half of 2002 until the end of first half of 2004. Currently, there is an increasing interest in monolithic stationary phases in CEC as an alternative to particulate packed capillary columns due in major part to the simplicity of the in situ preparation of monolithic stationary phases and the availability of a wide chemistry for surface ligands, which allow for tailoring the chromatographic sorbent needed for solving a given separation problem(s). The various approaches, formats, and chemistries used for the preparation of monolithic stationary phases are described.  相似文献   

10.
Monolithic materials have quickly become a well‐established stationary phase format in the field of capillary electrochromatography (CEC). Both the simplicity of their in situ preparation method and the large variety of readily available chemistries make the monolithic separation media an attractive alternative to capillary columns packed with particulate materials. This review summarizes the contributions of numerous groups working in this rapidly growing area, with a focus on monolithic capillary columns prepared from synthetic polymers. Various approaches employed for the preparation of the monoliths are detailed, and where available, the material properties of the resulting monolithic capillary columns are shown. Their chromatographic performance is demonstrated by numerous separations of different analyte mixtures in variety of modes. Although detailed studies of the effect of polymer properties on the analytical performance of monolithic capillaries remain scarce at this early stage of their development, this review also discusses some important relationships such as the effect of pore size on the separation performance in more detail.  相似文献   

11.
During the last decade, silica monolithic capillaries have focused more and more attention on miniaturized separation techniques like CEC, nano-LC, and chip electrochromatography owing to their unique chromatographic properties and to their possible in situ synthesis. Nevertheless, the preparation of conventional silica-based individual monolithic columns is time consuming, owing to the individual steps involved, including the synthesis of the silica matrix and its subsequent on-column chemical grafting. The hybrid organic-inorganic monoliths, whose synthesis is based on the polycondensation of siloxane with organosiloxane precursors, seems to be an attractive alternative since their direct synthesis leads to silica monoliths with organic moieties covalently linked to the inorganic silica matrix through hydrolytically stable Si-C bonds. This study describes the synthesis of hybrid monoliths using propyltrimethoxysilane (C3-TriMOS) as a new kind of silica coprecursor to subsequently increase the hydrophobicity of the stationary phase. The influence of several experimental parameters (pH, gelation temperature, relative proportion of the precursors) on the textural (skeleton and macropore size) and chromatographic properties (efficiency, retention, and electroosmotic mobility) of the obtained monoliths are discussed. The results show that the optimal coprecursor incorporation is obtained after a postgelation step during which the condensation of the C3-TriMOS coprecursor is favored by an increase in the pH medium. Thermal hydrolysis of urea previously added to the polymerization mixture allows this in situ pH increase. These hybrid monoliths present hydrophobic properties and allow the separation of test mixtures in the RP mode without any further modification. Moreover, they present excellent efficiencies since reduced plate height as low as 5 and 15 microm are obtained in the electrodriven mode (CEC) and in the hydrodynamic one (nano-LC), respectively.  相似文献   

12.
Monolithic capillary columns were prepared via ring-opening metathesis polymerization (ROMP) using norborn-2-ene (NBE) and 1, 4, 4a, 5, 8, 8a-hexahydro-1, 4, 5, 8-exo,endo-dimethanonaphthalene (DMN-H6) as monomers. The monolithic polymer was copolymerized with Grubbs-type initiator RuCl(2)(PCy(3))(2)(CHPh) and a suitable porogenic system within the confines of fused silica capillaries of different inner diameter (I.D.). The first part of the study focused on batch-to-batch reproducibility of ROMP-derived capillary monoliths. Capillary monoliths of 200 microm I.D. showed good reproducibility in terms of retention times, with relative standard deviations (RSD) of 1.9% for proteins and 2.2% for peptides. However, the separately synthesized capillary monoliths revealed pronounced variation in back pressure with RSD values of up to 31%. These variations were considerably reduced by cooling of the capillaries during polymerization. Using this optimized preparation procedure capillary monoliths of 100 and 50 microm I.D. were synthesized and the effects of scaling down the column I.D. on the morphology and on the reproducibility of the polymerization process were investigated. In the second part, the applicability of ROMP-derived capillary monoliths to a separation problem common in medical research was assessed. A 200 microm I.D. monolithic column demonstrated excellent separation behavior for insulin and various insulin analogs, showing equivalent separation performance to Vydac C4 and Zorbax C3-based stationary phases. Moreover, the high permeability of monoliths enabled chromatographic separations at higher flow rates, which shortened analysis time to about one third. For the analysis of insulin in human biofluid samples, enhanced sensitivity was achieved by using a 50 microm I.D. ROMP-derived monolith.  相似文献   

13.
Yan L  Zhang Q  Zhang W  Feng Y  Zhang L  Li T  Zhang Y 《Electrophoresis》2005,26(15):2935-2941
A novel hybrid organic-inorganic silica-based monolithic column possessing phenyl ligands for reversed-phase (RP) capillary electrochromatography (CEC) is described. The monolithic stationary phase was prepared by in situ co-condensation of tetraethoxysilane (TEOS) with phenyltriethoxysilane (PTES) via a two-step catalytic sol-gel procedure to introduce phenyl groups distributed throughout the silica matrix for chromatographic interaction. The hydrolysis and condensation reactions of precursors were chemically controlled through pH variation by adding hydrochloric acid and dodecylamine, respectively. The structural property of the monolithic column can be easily tailored through adjusting the composition of starting sol solution. The effect of PTES/TEOS ratios on the morphology of the created stationary phases was investigated. A variety of neutral and basic analytes were used to evaluate the column performance. The CEC columns exhibited typical RP chromatographic retention mechanism for neutral compounds and had improved peak shape for basic solutes.  相似文献   

14.
Acrylate-ester-based monoliths for CEC using peroxodisulfate as a chemical initiator were prepared. The influence of two ternary porogenic solvents on the physical and chromatographic properties of butyl acrylate monolithic stationary phases was investigated. The composition and the ratio of porogenic solvent were adjusted to obtain highly permeable rigid monoliths with adequate column efficiency. Among the prepared butyl acrylate monoliths, those polymerized from a ternary porogenic solvent of acetonitrile/ethanol/water exhibited the most promising performance with a minimum plate height for naphthalene of 10.5 microm and a bed permeability of 7.3 x 10(-14) m(2). A comparison in terms of efficiency and permeability with thermal and UV initiation using alpha,alpha'-AIBN was also performed. The resulting monolithic stationary phases were evaluated in terms of reproducibility, giving RSD values below 5.1% in the electrochromatographic properties studied.  相似文献   

15.
Two polar ligands, namely 3-hydroxypropionitrile and 1H-imidazole-4,5-dicarbonitrile (IDCN) were covalently attached to epoxy-activated silica-based monolithic capillary columns via an epoxide ring-opening reaction to yield CN-OH-Monolith and 2CN-OH-Monolith, respectively. The silica monolith was prepared by a sol-gel process, and the resulting "rod-like" stationary phase was subjected to pore tailoring with an alkaline solution to convert small pore domains to mesopore domains, thus yielding a monolith with bimodal pore structure consisting of flow through pores (i.e., flow channels for mobile-phase flow) and mesopores that provide most of the adsorption capacity of the monolith toward the separated solutes. The two polar monoliths, CN-OH-Monolith and 2CN-OH-Monolith, were evaluated in normal-phase CEC with organic-rich mobile phases less polar than the stationary phase. The 2CN-OH-Monolith bearing more polar functions than the CN-OH-Monolith exhibited more retention and improved selectivity toward model polar solutes.  相似文献   

16.
采用溶胶-凝胶法,以四乙氧基硅烷和苯基三乙氧基硅烷作为反应单体,通过酸碱两步催化在毛细管中进行原位缩聚反应,制备了新型有机-无机杂化硅胶基质毛细管整体柱,制备过程简单。整体柱基质中均匀分布的苯基基团可直接用于反相毛细管电色谱的分离,因而不需要对基质再进行衍生化。优化了整体柱的制备条件,采用扫描电镜和压汞法对整体柱的微观结构和孔径分布进行了表征。分别考察了溶胶-凝胶初始反应液中水的用量对柱床结构的影响和两种单体的配比对材料孔径分布的影响。研究了稠环芳烃类化合物在整体柱上的保留行为,用所制备的整体柱分离了7种苯酚类化合物,平均柱效达100000塔板/m。  相似文献   

17.
High-efficiency peptide analysis using multimode pressure-assisted capillary electrochromatography/capillary electrophoresis (pCEC/pCE) monolithic polymeric columns and the separation of model peptide mixtures and protein digests by isocratic and gradient elution under an applied electric field with UV and electrospray ionization-mass spectrometry (ESI-MS) detection is demonstrated. Capillary multipurpose columns were prepared in silanized fused-silica capillaries of 50, 75, and 100 microm inner diameters by thermally induced in situ copolymerization of methacrylic monomers in the presence of n-propanol and formamide as porogens and azobisisobutyronitrile as initiator. N-Ethylbutylamine was used to modify the chromatographic surface of the monolith from neutral to cationic. Monolithic columns were termed as multipurpose or multimode columns because they showed mixed modes of separation mechanisms under different conditions. Anion-exchange separation ability in the liquid chromatography (LC) mode can be determined by the cationic chromatographic surface of the monolith. At acidic pH and high voltage across the column, the monolithic stationary phase provided conditions for predominantly capillary electrophoretic migration of peptides. At basic pH and electric field across the column, enhanced chromatographic retention of peptides on monolithic capillary column made CEC mechanisms of migration responsible for separation. The role of pressure, ionic strength, pH, and organic content of the mobile phase on chromatographic performance was investigated. High efficiencies (exceeding 300 000 plates/m) of the monolithic columns for peptide separations are shown using volatile and nonvolatile, acidic and basic buffers. Good reproducibility and robustness of isocratic and gradient elution pressure-assisted CEC/CE separations were achieved for both UV and ESI-MS detection. Manipulation of the electric field and gradient conditions allowed high-throughput analysis of complex peptide mixtures. A simple design of sheathless electrospray emitter provided effective and robust low dead volume interfacing of monolithic multimode columns with ESI-MS. Gradient elution pressure-assisted mixed-mode separation CE/CEC-ESI-MS mass fingerprinting and data-dependent pCE/pCEC-ESI-MS/MS analysis of a bovine serum albumin (BSA) tryptic digest in less than 5 min yielding high sequence coverage (73%) demonstrated the potential of the method.  相似文献   

18.
In this paper, a novel highly cross‐linked porous monolithic stationary phase having a long alkyl chain ligand (C16) was introduced and evaluated in CEC. The monolithic stationary phase was prepared by in situ copolymerization of 1‐hexadecene, trimethylolpropane trimethacrylate, and 2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid (AMPS) in the presence of ternary porogenic solvent (cyclohexanol/1,4‐butanediol/water). In preparing monoliths, the ternary cross‐linker trimethylolpropane trimethacrylate was usually applied to preparing molecularly imprinted polymers or molecularly imprinted solid‐phase extraction, instead of binary cross‐linker ethylene dimethacrylate. 1‐Hexadecene was introduced to provide the non‐polar sites (C16) for chromatographic retention, while AMPS was used to generate the EOF for transporting the mobile phase through the monolithic capillary. Monolithic columns were prepared by optimizing proportion of porogenic solvent and AMPS content in the polymerization solution as well as the cross‐linkers. The monolithic stationary phases could generate a strong and stable EOF in various pH values and exhibit an RP‐chromatographic behavior for neutral compounds. For charged compounds, the separation was mainly based on the association of hydrophobic, electrostatic and electrophoretic interaction.  相似文献   

19.
Wu R  Hu L  Wang F  Ye M  Zou H 《Journal of chromatography. A》2008,1184(1-2):369-392
The column technologies play a crucial role in the development of new methods and technologies for the separation of biological samples containing hundreds to thousands compounds. This review focuses on the development of monolithic technology in micro-column formats for biological analysis, especially in capillary liquid chromatography, capillary electrochromatography and microfluidic devices in the past 5 years (2002-2007) since our last review in 2002 on monoliths for HPLC and CEC. The fabrication and functionalization of monoliths were summarized and discussed, with the aim of presenting how monolithic technology has been playing as an attractive tool for improving the power of existing chromatographic separation processes. This review consists of two parts: (i) the recent development in fabrication of monolithic stationary phases from direct synthesis to post-functionalization of the polymer- and silica-based monoliths tailoring the physical/chemical properties of porous monoliths; (ii) the application of monolithic stationary phases for one- and multi-dimensional capillary liquid chromatography, fast separation in capillary electro-driven chromatography, and microfluidic devices.  相似文献   

20.
A method is proposed for the comprehensive characterization and comparison of columns in the high-performance liquid chromatographic (HPLC) and capillary electrochromatographic (CEC) modes. Using this approach, column parameters such as the number of plates, the eddy-diffusion and mass-transfer contributions to peak broadening, the permeability, and the analysis time are incorporated in a single graph and a comparison in terms of efficiency and speed is obtained. The chromatographic performance of silica-based and polymer-based monolithic capillary columns is discussed and a comparison is made with the performance of packed columns. Also, the potential of ultra-high-pressure liquid chromatography is discussed in this context. In the HPLC mode, the best results were obtained with silica monoliths; in the CEC mode, the low-density methacrylate-ester-based monoliths showed the best performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号