首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Premixed turbulent flames of methane–air and propane–air stabilized on a bunsen type burner were studied using planar Rayleigh scattering and particle image velocimetry. The fuel–air equivalence ratio range was from lean 0.6 to stoichiometric for methane flames, and from 0.7 to stoichiometric for propane flames. The non-dimensional turbulence rms velocity, u′/SL, covered a range from 3 to 24, corresponding to conditions of corrugated flamelets and thin reaction zones regimes. Flame front thickness increased slightly with increasing non-dimensional turbulence rms velocity in both methane and propane flames, although the flame thickening was more prominent in propane flames. The probability density function of curvature showed a Gaussian-like distribution at all turbulence intensities in both methane and propane flames, at all sections of the flame.The value of the term , the product of molecular diffusivity evaluated at reaction zone conditions and the flame front curvature, has been shown to be smaller than the magnitude of the laminar burning velocity. This finding questions the validity of extending the level set formulation, developed for corrugated flames region, into the thin reaction zone regime by increasing the local flame propagation by adding the term to laminar burning velocity.  相似文献   

2.
Simultaneous measurements of temperature, CH* and OH* chemiluminescent species are carried out to explore the impact of stretch rate and curvature on the structure of premixed flames. The configuration of an initially flat premixed flame interacting with a toroidal vortex is selected for the present study and reasons for this choice are discussed. Lewis number effects are assessed by comparing methane and propane flames. It is emphasized that the flame structure experiences very strong variations. In particular, the flame is shrunk (broadened) in the initial (final) period of the interaction with the vortex where strain rate (curvature) contribution of the stretch rate is predominant. By further analysing independently the thickness of the preheat and reaction zones, it is shown that for propane flames, not only the former but also the latter is significantly altered in zones where the flame curvature is negative. Changes in the reaction zone properties are further emphasized using CH* and OH* radicals. It is demonstrated that higher thermal diffusivity plays a significant role around curved regions, in which the enhanced diffusion of heat leads to a strong increase of CH* compared to OH* intensity. As an overall conclusion, this study suggests that it would be interesting to reassess the internal flame structure at lower and moderate Karlovitz numbers since changes might appear for a moderate vortex intensity with typical size much larger than the flame thickness.  相似文献   

3.
The thickness of the instantaneous flamelets in a turbulent flame brush on a weak-swirl burner burning in the thin reaction zones regime has been analysed experimentally, theoretically, and numerically. The experimental flame thickness has been measured correlating two simultaneous Rayleigh images and one OH-image from two closely spaced cross sections in the flame. It appears that the low temperature edge of the flame is thickened by turbulent eddies but that these structures cannot penetrate far enough into the flame front to distort the inner layer for the moderate Karlovitz numbers used. The flame front based on the temperature gradient at the inner layer becomes thinner for lean flames and thicker for rich methane–air flames. This has been explained theoretically and numerically by studying the influence of flame stretch and preferential diffusion on the flame thickness. It appears that the flame front thickness at the inner layer (and mass burning rate) is not influenced by turbulent mixing processes, and it seems that eddies of the size of the inner layer have to be used to change this picture. Experiments closer to the boundary of the broken reaction zones regime have to confirm this in the future.  相似文献   

4.
The characterization of premixed flames by a flame speed has been a subject that has occupied much interest in the literature in many systematic studies on combustion phenomena. Consumption and displacement speeds are two such flame speeds that are understood to describe the flame dynamics under the effect of flame curvature, flow non-uniformities, Lewis number and turbulence effects along with heat transfer with flame holders and cold walls. As such, much work has been done in the past where either one of these two speeds has been employed along with a linear sensitivity coefficient (Markstein length) for describing different sensitivities to stretch effects. However, despite recent attempts using the asymptotic theory, the relationship between these two quantities has only been clarified in a limited manner for flames of finite thickness. In this study, we use flame stretch theory that takes into account changes of stretch, curvature, heat transfer and Lewis number effects throughout the pre-heat zone and its integral effect on the flame reaction zone. A sound mathematical and physical basis is provided for understanding the two speeds that is valid for weak as well as strong stretch effects. Understanding from theory is further demonstrated by analysing several example 1D stretched flames along with a 2D bluff body flame near extinction.  相似文献   

5.
Large eddy simulation (LES) is used to investigate three-dimensional (3D) lean premixed turbulent methane–air flames in the thin-reaction-zone regime. In this regime, the Kolmogorov scale is smaller than the preheat zone thickness, but larger than the reaction zone thickness. Past numerical studies of similar flames were primarily direct numerical simulation either in two-dimensions or using the artificially thickened flame approach in 3D. For an LES the effect of small (unresolved) scales on the scalar field must be, modeled accurately to capture the correct flame structure. A subgrid combustion model based on the linear-eddy-mixing (LEM) model is used within an LES framework (called LEM–LES hereafter) to capture the 3D flame-structure of the highly stretched premixed flames. A finite-rate, one-step methane–air chemistry with a non-unity Lewis number formulation is used in this study. The simulated flame structure resembles flames experimentally studied in the thin-reaction-zone regime. Even though the preheat zone is broadened by the penetration of small eddies, the chemical reaction zone remains thin and localized. This feature is captured properly in the current LEM–LES approach. The flame structure and other statistics such as the flame area evolution, curvature, and strain-rate statistics computed using the LEM–LES are also in good agreement with the past DNS studies.  相似文献   

6.
This paper presents an assessment of Large Eddy Simulations (LES) in calculating the structure of turbulent premixed flames propagating past solid obstacles. One objective of the present study is to evaluate the LES simulations and identify the drawbacks in accounting the chemical reaction rate. Another objective is to analyse the flame structure and to calculate flame speed, generated overpressure at different time intervals following ignition of a stoichiometric propane/air mixture. The combustion chamber has built-in repeated solid obstructions to enhance the turbulence level and hence increase the flame propagating speed. Various numerical tests have also been carried out to determine the regimes of combustion at different stages of the flame propagation. These have been identified from the calculated results for the flow and flame characteristic parameters. It is found that the flame lies within the ‘thin reaction zone’ regime which supports the use of the laminar flamelet approach for modelling turbulent premixed flames. A submodel to calculate the model coefficient in the algebraic flame surface density model is implemented and examined. It is found that the LES predictions are slightly improved owing to the calculation of model coefficient by using submodel. Results are presented and discussed in this paper are for the flame structure, position, speed, generated pressure and the regimes of combustion during all stages of flame propagation from ignition to venting. The calculated results are validated against available experimental data.  相似文献   

7.
Ammonia appears a promising hydrogen-energy carrier as well as a carbon-free fuel. However, there remain limited studies for ammonia combustion especially under turbulent conditions. To that end, using the spherically expanding flame configuration, the turbulent flame speeds of stoichiometric ammonia/air, ammonia/methane and ammonia/hydrogen were examined. The composition of blends studied are currently being investigated for gas turbine application and are evaluated at various turbulent intensities, covering different kinds of turbulent combustion regimes. Mie-scattering tomography was employed facilitating flame structure analysis. Results show that the flame propagation speed of ammonia/air increases exponentially with increasing hydrogen amount. It is less pronounced with increasing methane addition, analogous to the behavior displayed in the laminar regime. The turbulent to laminar flame speed ratio increases with turbulence intensity. However, smallest gains were observed at highest hydrogen content, presumably due to differences in the combustion regime, with the mixture located within the corrugated flamelet zone, with all other mixtures positioned within the thin reaction zone. A good correlation of the turbulent velocity based on the Karlovitz and Damköhler numbers is observable with the present dataset, as well as previous experimental measurements available in literature, suggesting that ammonia-based fuels may potentially be described following the usual turbulent combustion models. Flame morphology and stretch sensitivity analysis were conducted, revealing that flame curvature remains relatively similar for pure ammonia and ammonia-based mixtures. The wrinkling ratio is found to increase with both increasing ammonia fraction and turbulent intensity, in good agreement with measured increases in turbulent flame speed. On the other hand, in most cases, the flame stretch effect does not change significantly with increasing turbulence, whilst following a similar trend to that of the laminar Markstein length.  相似文献   

8.
The combustion of bimodal nano/micron-sized aluminum particles with air is studied both analytically and experimentally in a well-characterized laminar particle-laden flow. Experimentally, an apparatus capable of producing Bunsen-type premixed flames was constructed to investigate the flame characteristics of bimodal-particle/air mixtures. The flame speed is positively affected by increasing the mass fraction of nano particles in the fuel formulation despite the lower flame luminosity and thicker flame zone. Theoretically, the flames are assumed to consist of several different regimes for fuel-lean mixture, including the preheat, flame, and post flame zones. The flame speed and temperature distribution are derived by solving the energy equation in each regime and matching the temperature and heat flux at the interfacial boundaries. The analysis allows for the investigation of the effects of particle composition and equivalence ratio on the burning characteristics of aluminum-particle/air mixtures. Reasonable agreement between theoretical results and experimental data was obtained in terms of flame speed. The flame structure of a bimodal particle dust cloud may display either an overlapping or a separated configuration, depending on the combustion properties of aluminum particles at different scales. At low percentages of nano particles in the fuel formulation, the flame exhibits a separated spatial structure with a wider flame regime. At higher nano-particle loadings, overlapping flame configurations are observed.  相似文献   

9.
Flame particles (FP) are massless, virtual particles which follow material points on the flame surface. This work presents a tracking algorithm for FPs which utilizes barycentric coordinates. The methodology can be used with any cell shape in the computational mesh and allows computationally fast spatial interpolation as well as efficient determination of the intersection of FP trajectories with iso-surfaces. In contrast to previous flame particle tracking (FPT) approaches, the code is fully parallelized and can therefore be used in-situ during the simulation. It also includes fully parallelized computation of flame consumption speed by integrating reaction rates along a line normal to the flame surface at each FP position. Direct numerical simulations of laminar pulsating premixed hydrogen–air Bunsen flames serve as validation cases and showcase the added value of tracking material points for studying local flame dynamics. Exciting the inlet flow harmonically with frequencies equal to the inverse flame time scale leads to a pulsating mode where the flame front is corrugated. Ten times higher frequencies nearly resemble the steady state solution. The FPs are seeded along the flame surface and are used to track the unsteady diffusive, convective and chemical contributions at arbitrary points on the flame front over time. Their trajectories reveal a phase shift between the unsteady flame stretch rate and local flame speed of the order of 0.1 flame time scales for rich hydrogen flames. This is caused by a time delay between straining and stretch due to curvature. The reason is that diffusive processes follow the time signal of curvature while chemical processes are most strongly affected by the straining rate, which dominates the high Lewis number hydrogen flames investigated. This time history effect may help to explain the large scattering in the correlation of local flame speed with flame stretch found in turbulent flames.  相似文献   

10.
Fuel-rich laminar adiabatic flames of premixed dimethyl ether/air mixtures at a high initial temperature and atmospheric pressure have been studied by numerical simulation and sensitivity analysis. These flames, having two heat release zones, are of great interest as an unusual and little-studied subject. We have investigated the chemical processes occurring in the two zones and analysed the mechanism of heat release in the flame. It has been found that the key reactions that have a significant influence on the flame speed are those involving dimethyl ether and the products of its incomplete oxidation. Calculation of the heat release rate confirms the presence of two heat release zones in the flame. A comparison of the reactions making a major contribution to the heat release with those significantly affecting the flame speed indicates that the main factor determining the flame speed is the formation of hydroxyls, rather than heat release. Analysis of the flame speed sensitivity shows that in the case of a two-zone structure of the flame, its speed is mainly determined by the reactions taking place in the low-temperature zone. That is, the cool zone with a higher temperature gradient is the leading one.  相似文献   

11.
The initiation, propagation, and transition of the autoignition assisted spherical cool flame and double flame are studied numerically and experimentally using n-heptane/air/He mixtures under shock-tube experimental conditions over a wide range of temperatures. The primary goal of the current study is to understand the effects of the ignition Damkohler number, ignition energy, flame curvature, and autoignition-induced flow compression on the propagation of spherical flames to ensure the proper interpretation of shock-tube flame speed measurements at engine-relevant conditions. The results show that at high ignition Damkohler number, there are three different flame regimes, cool flame, double flame, and hot flame. The cool flame speed accelerates dramatically with the increase of ignition Damkohler number. In addition, it is found that the change of flame regime, low-temperature autoignition, flame stretch, and autoignition-induced flow compression result in a complicated non-linear dependence of flame speed on stretch. The results also reveal that the spherical cool flame has much lower Markstein length compared to the hot flame at T > 600 K. Moreover, it is found that both the autoignition assisted cool flame and the trailing hot flame front in the double flame can propagate much faster that the hot flame alone at the same mixture conditions, leading to a nonlinear dependence of flame speed on the mixture initial temperature. The simulated flame trajectories and the flame speed dependence on temperature agree qualitatively well with the shock-tube experiments. A quantitative criterion to ensure the accurate speed measurement of the cool and hot flame is proposed. The present study provides important physical insight and guidance for the flame speed measurement using a shock-tube at engine relevant conditions.  相似文献   

12.
Direct numerical simulation is a very powerful tool to evaluate the validity of new models and theories for turbulent combustion. In this paper, direct numerical simulations of spherically expanding premixed turbulent flames in the corrugated flamelet regime are performed. The flamelet-generated manifold method is used to deal with detailed reaction kinetics. The numerical method is validated for both laminar and turbulent expanding flames. The computational results are analyzed by using an extended flame stretch theory. It is investigated whether this theory is able to describe the influence of flame stretch and curvature on the local burning velocity of the flame. If the full profiles of flame stretch and curvature through the flame front are included in the theory, the local mass burning rate is predicted accurately. The influence of several approximations, which are used in other existing theories, is studied. When flame stretch is assumed to be constant through the flame front or when curvature of the flame front is neglected, the theory fails to predict the local mass burning rate.  相似文献   

13.
The objective of this study is to construct a regime diagram for laminar flames stabilized behind flame holders with respect to the presence of a recirculation zone (RZ), trend of heat loss to the burner, and flow strain and flame curvature effects. This is achieved by varying the radius of the cylindrical flame holder and the mixture velocity between the flashback limit and the blow-off limit at a fixed equivalence ratio. It is found that for all flame holders, a RZ vortex is not present near the flashback limit. At flashback, flow strain is almost zero and the flame curvature is found to be the main contributor to flame stretch. With increasing mixture velocity, the heat loss to the flame holder decreases for smaller radii and a RZ does not appear till blow-off occurs. For flame holders with radii greater than twice the flame thickness, the heat loss to the flame holder first decreases with increasing mixture velocity without a RZ. A further increase in the mixture velocity does not result in blow-off but instead, a RZ appears behind the flame holder reversing the heat loss trend. In this scenario, flow strain is found to increase significantly and becomes the major contributor to flame stretch, although curvature effects are still present. With the RZ present, the blow-off limits are significantly extended and the stabilization mechanism is altered. The RZ vortex shields the flame base from intense pre-heating resulting from the increase in heat loss to the flame-holder while it provides support to the flame leading edge by recirculation of hot products. The results obtained from this study are used to construct a regime diagram, which offers a broader view of the whole flame stabilization process and its mechanisms.  相似文献   

14.
Intricacies associated with the estimation of laminar flame speed using the axisymmetric Bunsen flame technique were assessed, through parametric direct numerical simulations. The study involved methane-air mixtures at atmospheric pressure and temperature, and both the flame cone angle and flame surface area methods were utilized to estimate the laminar flame speeds based on conditions used in recent relevant experimental studies. The results provided insight into the details of the flame structure and allowed for the assessment of various non-idealities and the attendant uncertainties associated with the estimation of laminar flame speeds. Additionally, molecular transport effects were investigated by altering the fuel diffusivity, in order to evaluate its impact on the flame structure and propagation under the presence of negative stretch. The modification of fuel diffusivity was found to affect the burning rate as stretch varies. Under fuel rich conditions, decreasing the fuel diffusivity was found to have an opposite effect on the heat release and thus the burning rate, when compared to positively stretched flames that have been investigated recently in a similar manner. The reported results are expected to provide guidance in flame propagation experiments using the convenient Bunsen flame method at near-atmospheric or elevated pressures, as well as insight into the effects of negative stretch that has, compared to positive, attracted less attention in past studies.  相似文献   

15.
Extinction limits and flame bifurcation of lean premixed dimethyl ether–air flames are numerically investigated using the counterflow flame with a reduced chemistry. Emphasis is paid to the combined effect of radiation and flame stretch on the extinction and flammability limits. A method based on the reaction front is presented to predict the Markstein length. The predicted positive Markstein length agrees well with the experimental data. The results show that flow stretch significantly reduces the flame speed and narrows the flammability limit of the stretched dimethyl ether–air flame. It is found that the combined effect of radiation and flow stretch results in a new flame bifurcation and multiple flame regimes. At an equivalence ratio slightly higher than the flammability limit of the planar flame, the distant flame regime appears at low stretch rates. With an increase in the equivalence ratio, in addition to the distant flame, a weak flame isola emerges at moderate stretch rates. With a further increase in the equivalence ratio, the distant flame and the weak flame branches merge together, resulting in the splitting of the weak flame branch into two weak flame branches, one at low stretch and the other at high stretch. Flame stability analysis demonstrates that the high stretch weak flame is also stable. Furthermore, a K-shaped flammability limit diagram showing various flame regimes and their extinction limits is obtained.  相似文献   

16.
A premixed and thermo-diffusively unstable turbulent hydrogen-air flame-in-a-box case is simulated in conjunction with the flame particle tracking (FPT) method. The flame is located in the flamelet regime. The focus lies on the assessment of memory effects in local flame dynamics. By tracking flame particles on an iso-surface of the flame during flame-turbulence interaction, the time history of flame speed and flame stretch can be recorded for each point on the flame iso-surface in a Lagrangian reference frame. The results reveal a time delay between the local flame speed and flame stretch signal, showing that previous values of flame stretch affect currently observed values of flame speed. Furthermore, by choosing flame particles whose trajectories are dominated by single frequencies, the time delay can be quantified. While plotting instantaneous values of flame speed and flame stretch results in a large scattering for turbulent flames, a quasi-linear correlation can be achieved by shifting the time signal of flame stretch according to the time delay. The time delay itself depends on the local flow time scale, which is expressed as a local Damköhler number. There is, however, an important difference between consumption and displacement speed. While most analyses in the literature are limited to the flame displacement speed, the flame consumption speed is evaluated for each flame particle in this work as well, which shows a strong correlation with the local equivalence ratio even at unsteady conditions. As the flame particles move toward regions with more negative flame stretch, the consumption speed decreases as the flame locally extinguishes. At the same time, the diffusive component of the displacement speed increases, as the tangential component of the diffusive flux increases in regions with strong negative flame curvature.  相似文献   

17.
Different approaches to the modelling of turbulent combustion first are reviewed briefly. A unified, stretched flamelet approach then is presented. With Reynolds stress modelling and a generalized probability density function (PDF) of strain rate, it enables a source term, in the form of a probability of burning function, Pb, to be expressed as a function of Markstein numbers and the Karlovitz stretch factor. When Pb is combined with some turbulent flame fractal considerations, an expression is obtained for the turbulent burning velocity. When it is combined with the profile of the unstretched laminar flame volumetric heat release rate plotted against the reaction progress variable and the PDF of the latter, an expression is obtained for the mean volumetric turbulent heat release rate. Through these relationships experimental values of turbulent burning velocity might be used to evaluate Pb and hence the CFD source term, the mean volumetric heat release rate.

Different theoretical expressions for the turbulent burning velocity, including the present one, are compared with experimental measurements. The differences between these are discussed and this is followed by a review of CFD applications of these flamelet concepts to premixed and non-premixed combustion. The various assumptions made in the course of the analyses are scrutinized in the light of recent direct numerical simulations of turbulent flames and the applications to the flames of laser diagnostics. Remaining problem areas include a sufficiently general combination of strain rate and flame curvature PDFs to give a single PDF of flame stretch rate, the nature of flame quenching under positive and negative stretch rates, flame responses to changing stretch rates and the effects of flame instabilities.  相似文献   

18.
The statistical behaviour and closure of sub-grid scalar fluxes in the context of turbulent premixed combustion have been assessed based on an a priori analysis of a detailed chemistry Direct Numerical Simulation (DNS) database consisting of three hydrogen-air flames spanning the corrugated flamelets (CF), thin reaction zones (TRZ) and broken reaction zones (BRZ) regimes of premixed turbulent combustion. The sub-grid scalar fluxes have been extracted by explicit filtering of DNS data. It has been found that the conventional gradient hypothesis model is not appropriate for the closure of sub-grid scalar flux for any scalar in the context of a multispecies system. However, the predictions of the conventional gradient hypothesis exhibit a greater level of qualitative agreement with DNS data for the flame representing the BRZ regime. The aforementioned behaviour has been analysed in terms of the properties of the invariants of the anisotropy tensor in the Lumley triangle. The flames in the CF and TRZ regimes are characterised by a pronounced two-dimensional anisotropy due to strong heat release whereas a three-dimensional and more isotropic behaviour is observed for the flame located in the BRZ regime. Two sub-grid scalar flux models which are capable of predicting counter-gradient transport have been considered for a priori DNS assessment of multispecies systems and have been analysed in terms of both qualitative and quantitative agreements. By combining the latter two sub-grid scalar flux closures, a new modelling strategy is suggested where one model is responsible for properly predicting the conditional mean accurately and the other model is responsible for the correlations between model and unclosed term. Detailed physical explanations for the observed behaviour and an assessment of existing modelling assumptions have been provided. Finally, the classical Bray–Moss–Libby theory for the scalar flux closure has been extended to address multispecies transport in the context of large eddy simulations.  相似文献   

19.
Turbulent flames are intrinsically curved. In the presence of preferential diffusion, curvature effects either enhance or suppress molecular diffusion, depending on the diffusivity of the species and the direction of the flame curvature. When a tabulated chemistry type of modeling is employed, curvature-preferential diffusion interactions have to be taken into consideration in the construction of manifolds. In this study, we employ multistage stage flamelet generated manifolds (MuSt-FGM) method to model autoigniting non-premixed turbulent flames with preferential diffusion effects included. The conditions for the modeled flame are in MILD combustion regime. To model the above-mentioned curvature-preferential diffusion interactions, a new mixture fraction which has a non-unity Lewis number is defined and used as a new control variable in the manifold generation. 1D curved flames are simulated to create the necessary flamelets. The resulting MuSt-FGM tables are used in the simulation of 1D laminar flames, and then also applied to turbulent flames using 2D direct numerical simulations (DNS). It was observed that when the curvature effects are included in the manifold, the MuSt-FGM results agree well with the detailed chemistry results; whereas the results become unsatisfactory when the curvature effects are ignored.  相似文献   

20.
The outwardly propagating spherical flame (OPF) method is popularly used to measure the laminar flame speed (LFS). Recently, great efforts have been devoted to improving the accuracy of the LFS measurement from OPF. In the OPF method, several assumptions are made. For examples, the burned gas is assumed to be static and in chemical equilibrium. However, these assumptions may not be satisfied under certain conditions. Here we consider low-pressure and super-adiabatic propagating spherical flames, for which chemical non-equilibrium exists and the burned gas may not be static. The objective is to assess the chemical non-equilibrium effects on the accuracy of LFS measurement from the OPF method. Numerical simulations considering detailed chemistry and transport are conducted. Stoichiometric methane/air flames at sub-atmospheric pressures and methane/oxygen flames at different equivalence ratios are considered. At low pressures, broad heat release zone is observed and the burned gas cannot quickly reach the adiabatic flame temperature, indicating the existence of chemical non-equilibrium of burned gas. Positive flow in the burned gas is identified and it is shown to become stronger at lower initial pressure. Consequently, the LFS measurement from OPF at low pressures is not accurate if the burned gas is assumed to be static and at chemical equilibrium. For super-adiabatic spherical flames, the burned gas speed is found to be negative due to the local temperature overshoot at the flame front. Such negative speed of burned gas can also reduce the accuracy of LFS measurement. It is recommended that the direct method measuring both flame propagation speed and flow speed of unburned gas should be used to determine the LFS at low pressures or for mixtures with super-adiabatic flame temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号