首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
本文运用有限元方法结合动态光弹性分析,对动态应力强度因子的计算进行了分析研究.作者在钱伟长教授[1]的基础上,将动态裂尖的奇异性分析解引入有限元计算;并以动态光弹性分析所得的裂纹扩展长度与时间的关系曲线作为定解补充条件,据此建立了有效模拟裂纹扩展的数值模型.通过具体算例证明,本文的方法取得了与实验结果相吻合的效果.  相似文献   

2.
三轴压缩下岩石/混凝土的三维细观损伤模型   总被引:2,自引:1,他引:1  
考虑三轴压应力作用下的无限大体深埋椭圆形裂纹的变形场,给出了闭合椭圆形微裂纹的能量释放率.采用能量平衡方法分析了闭合椭圆形微裂纹的扩展条件,得到了代表性体积单元中具有任意空间取向的单个闭合椭圆形微裂纹及其扩展引起的附加柔度张量.分析了闭合椭圆形微裂纹的偏折扩展,得到了微裂纹偏折扩展引起的附加柔度张量.采用Taylor方法考虑微裂纹系统对代表性体积单元变形的影响,引入概率密度函数,得到了三轴压缩下岩石/混凝土的三维细观损伤模型.分析了混凝土的单轴压缩特性,结果表明该模型能够很好地描述实验现象.  相似文献   

3.
裂缝的高压水力劈裂是混凝土高坝安全评估的重要部分,研究其过程中的流固耦合作用是准确预测在各种情况下裂纹扩展路径和危险程度的关键.该文利用扩展有限元法在模拟裂纹扩展方面的优势,对大坝的裂纹进行水力劈裂模拟研究.裂纹中的水压分布模型采用Brühwiler和Saouma水力劈裂试验的成果,体现了水压和裂纹宽度的耦合关系,给出了扩展有限元在裂纹面上施加水压力荷载的实施方法,对一典型重力坝裂纹的水力劈裂进行了数值模拟分析.研究结果表明:采用扩展有限元法模拟水力劈裂,克服了常规有限元法存在的缺点,裂纹扩展时不用重新划分网格,裂纹的实时宽度可以由加强节点的附加自由度得到,裂纹面上水压的施加也变得简单易行.当考虑裂纹内的流固耦合效应时,裂纹的扩展路径相比不考虑耦合效应时的扩展路径(均布全水头水压),扩展角变大,扩展距离变短.  相似文献   

4.
考虑裂纹内部介质的热传导率,研究了一维六方准晶非周期平面内含中心开口裂纹的平面热弹性问题.利用Fourier积分变换技术,得到了热应力、裂纹尖端处的热应力强度因子和应变能密度因子的封闭解.数值结果讨论了裂纹内部介质的热传导率、外载荷及声子场-相位子场耦合系数对热应力强度因子和应变能密度因子的影响.结果表明,声子场-相位子场耦合系数对裂纹扩展影响较大.当声子场载荷较小或热流密度较大时,裂纹不易扩展,热流密度在裂纹尖端处会出现集中热效应.随着裂纹内部介质热传导率的增大,热流密度逐渐增加而热应力强度因子逐渐减小.该文所得结果为准晶热力学性质的实际应用提供了理论依据,进而可用于优化准晶元器件的设计和制备.  相似文献   

5.
采用ANSYS提供的粘塑性流动准则下的双线性各向同性硬化本构模型,考虑材料参数的温度相关性,通过单个单元有限模型对4种温度下施加相同平均应力和不同应力幅值的应力循环工况进行有限元模拟。实验与模拟结果的对比表明,该模型能够较好的地模拟高温450℃以下Ti-6242S钛合金粘塑性变形的循环累积。此外,由于该模型没有考虑循环过程中背应力的演化,对滞回环的预测不够理想,且过高预测了520℃下的粘塑性累积变形。  相似文献   

6.
含分层损伤复合材料加筋层合板的分层扩展研究   总被引:5,自引:0,他引:5  
建立了复合材料加筋结构的后屈曲和分层损伤扩展行为的数值模拟方法.基于Mindlin一阶剪切理论和von-Karman大挠度理论的层合板和层合梁单元,提出了含分层损伤复合材料加筋层合板分层扩展行为的有限元分析方法;利用虚裂纹闭合技术计算分层前缘的总能量释放率,并采用总能量释放率准则分层扩展判据,结合自适应网格移动技术,对在压缩载荷作用下的具有不同加筋形式,不同初始分层面积和形状的加筋板结构分层扩展行为进行了数值模拟研究,在分析中还考虑了加筋刚度、位置和分布,分层形状和大小、边界支撑强弱和分层前缘的接触效应对结构分层扩展行为的影响.本所提出的研究方法对工程界关于复合材料结构的设计具有重要意义.  相似文献   

7.
爆炸和冲击载荷下金属材料及结构的动态失效仿真   总被引:1,自引:1,他引:0       下载免费PDF全文
通过数值模拟研究爆炸冲击载荷下金属材料和结构的动态失效规律,对表征爆炸冲击毁伤效应及设计新型抗冲击结构有重要意义.强动载下金属材料失效涉及材料大变形、热力耦合、材料状态变化等多个复杂物理过程,给数值仿真带来了极大挑战,其中包括裂纹、剪切带等复杂失效模式的几何描述、动态失效准则的确定、塑性与损伤耦合演化的描述等问题.针对这些挑战性问题,基于能量变分建立描述金属动态失效过程的热弹塑性相场理论和计算模型,实现了断裂与剪切带失效模式的统一描述,并提出了其显式有限元高效求解策略.进一步将该模型应用于爆炸冲击载荷下金属脆韧失效模式转变、绝热剪切带(ASBs)自组织及冲击波作用下薄壁圆盘失效形式转变三个典型金属动态失效问题,验证了理论模型的准确性及计算模型的稳健性.该工作为后续开展基于仿真的爆炸冲击毁伤评估及防护结构设计研究奠定了基础.  相似文献   

8.
裂纹位置和尺寸等是工程监测需掌握的非常重要的信息.光滑扩展有限元是近年来发展起来的一种模拟裂纹的有效方法,即使采用极度不规则单元仍可获得精确的模拟结果,无需单元"质量"要求.因此在单元自动划分方面具有突出的优势,这一特点也使得该方法适用于裂纹反求过程的实时调用和含裂纹仿真模型的网格自动划分.研究基于光滑扩展有限元的不确定反求方法,用于识别平面弹性板中直裂纹位置和尺寸参数,即采用光滑扩展有限元法进行拉伸工况的正问题分析,通过测量平板边缘的节点位移建立优化模型,调用遗传算法实现裂纹参数的反求.反求过程中将材料的弹性模量和Poisson(泊松)比作为区间不确定变量,采用一阶Taylor(泰勒)公式实现了平板裂纹参数的不确定性反求.  相似文献   

9.
聚合物时温等效模型有限元应用研究   总被引:2,自引:1,他引:1  
为更好地描述聚合物材料力学性能的温度相关性问题,对目前广泛应用的WLF模型进行改进研究,并引入“零时间”因子提高了粘弹性材料变温松弛模量的获取精度.在此基础上基于ABAQUS用户材料子程序UTRS将时温等效模型应用到数值计算中.根据不同温度水平下的应力松弛实验获得模型参数,并通过等速拉伸实验与数值结果的对比验证了该模型及其有限元方法的可行性及正确性.结果表明:引入“零时间”因子的变温松弛模量精度更高;改进WLF模型对复合推进剂具有更好的适用性和更高的精确度.  相似文献   

10.
Ⅲ型弹粘塑性/刚性界面裂纹的定常扩展裂尖场   总被引:1,自引:1,他引:0  
考虑裂纹尖端的奇异性和粘性效应,建立了双材料界面扩展裂纹尖端的弹粘塑性控制方程.引入界面裂纹尖端的位移势函数和边界条件,对刚性-弹粘塑性界面Ⅲ型界面裂纹进行了数值分析,求得了界面裂纹尖端应力应变场,并讨论了界面裂纹尖端场随各影响参数的变化规律.计算结果表明,粘性效应是研究界面扩展裂纹尖端场时的一个主要因素,界面裂纹尖端为弹粘性场,其场受材料的粘性系数、Mach数和奇异性指数控制.  相似文献   

11.
Phase-field models have become popular to simulate cohesive failure problems because of their capability of predicting crack initiation and propagation without additional criteria. In this paper, a new phase-field damage model coupled with general softening laws for cohesive fracture is proposed based on the unified phase-field theory. The commonly used quadratic geometric function in the classical phase-field model is implemented in the proposed model. The modified degradation function related to the failure strength and length scale is used to obtain the length scale insensitive model. Based on the analytical solution of a 1-D case, general softening laws in cohesive zone models can be considered. Parameters in the degradation function can be calibrated according to different softening curves and material properties. Numerical examples show that the results obtained by the proposed model have a good agreement with experimental results and the length scale has a negligible influence on the load-displacement curves in most cases, which cannot be observed in classical phase-field model.  相似文献   

12.
Thermal shock is an extreme form of thermo-mechanical loading. Detailed investigations of thermal shock and live time analysis close to reality are necessary in industrial engineering in order to get a good prediction of life expectancy of high quality and safety relevant machine components. The first part of this paper concentrates on experimental investigations of macroscopic quantities like temperature, deformation, damage and crack propagation. Additionally first results on parameter studies for finite element thermal shock simulations on the thermal-mechanical problem are summarized. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Romana Piat 《PAMM》2006,6(1):191-192
Both energy and stress criteria are necessary conditions for fracture but neither the one nor the other is sufficient. A combination of these criteria is proposed in [1]. This combined criterion is used for numerical simulation of crack propagation by the 4-point bending test in porous materials. Examples of such materials are carbon-carbon composites (CFC) [2, 3]. Micrographs of the cross-sections of these materials are used for FEM modeling of the crack propagation on the basis of the proposed criterion. Results of the numerical modeling are compared with experimental results. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Yousef Heider  Bernd Markert 《PAMM》2016,16(1):447-448
In this contribution, the numerical simulation of hydraulic fracture of fluid-saturated porous materials is carried out on a continuum-mechanical scale using the theory of porous media (TPM), extended by a phase-field modeling (PFM) approach. Following this, behaviors such as crack nucleation and propagation, solid matrix deformation and interstitial-fluid flow change from Darcy to Stokes-like flow in the cracked region can be realized. Moreover, permanent changes of the local physics due to occurrence of the crack, such as of the volume fractions and the permeability, are taken into consideration. The mathematical modeling of this problem yields a strongly coupled system of differential algebraic equations (DAE). Thus, special descretization schemes for a stable and efficient solution are needed. To reveal the ability of the proposed model to simulate the important features of hydraulic cracking, a two-dimensional example using the finite element method is presented. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Charlotte Kuhn  Ralf Müller 《PAMM》2009,9(1):191-192
In Francfort and Marigo's variational free-discontinuity formulation of brittle fracture [1] cracking is regarded as an energy minimization process, where the total energy is minimized with respect to any admissible crack set and displacement field. No additional criterion is needed to determine crack paths, branching of cracks and crack initiations. However, a direct discretization of the model is faced with significant technical problems, as it involves minimizations in a set of possibly discontinuous functions. A regularized version of the model has been introduced by Bourdin [2] and based on this, we use the concept of a continuum phase field model to simulate cracking processes. Cracks are indicated by the order parameter of the phase field model and cracking can be regarded as a phase transition problem. Additionally, introducing the heat equation into the model, it is capable to also take account of crack propagation due to thermal stresses. In the numerical implementation, crack parameter as well as temperature are treated as additional degrees of freedom and the coupled field equations are solved using the finite element method together with an implicit time integration scheme. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Today, the local approach to fracture is widely applied to simulate the failure of specimens. For ductile damage processes the Gurson-Tvergaard-Needleman model is the quasi-standard. In the last time non-local extensions allowed a mesh-size independent simulation of crack growth. However, most publications dealing with this subject focus upon the convergence regarding global quantities such as the load-displacement relation. Minor attention is paid to the fields directly at the crack tip. Correspondingly, the interrelationship between the intrinsic length of the model and relevant microscopic damage processes at the crack tip is only partly established until now. In the present study the crack propagation is simulated for an implicitly gradient enriched GTN-model within a boundary layer in order to overcome influences of the specimen geometry. The different stages of damage evolution are resolved by a fine mesh. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
[EN] In this work, a nonlocal damage model is proposed for dynamic analysis of viscoplastic shell structures using the phase-field approach. A phase-field variable on the mid surface is introduced to characterize the nonlocal damage as well as the transition between undamaged and damaged phase. The total free energy in [1] is modified as a sum of Helmholtz free-energy and Ginzburg-Landau one. The latter is defined as a function of the phase-field variable and its corresponding gradient. This enhancement gives rise to an introduction of gradient parameters in terms of a substructure-related intrinsic length-scale. The evolution of the phase-field based damage variable can be found from the minimum principle of the dissipation potential [3]. The performance of the proposed model is demonstrated through numerical results of a plate with a circular hole. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Arun Raina  Christian Miehe 《PAMM》2015,15(1):103-104
We present an application of the phase-field method of fracture to the simulation of artery rupture at large strains. To achieve this, the crack driving force function associated with the evolution of the crack phase-field is modified to account for the inherent anisotropy of the soft biological tissues. The phase-field methods present a promising and innovative approach to the thermodynamically consistent modeling of fracture. A key advantage lies in the prediction of the complex crack topologies where the cohesive zone approaches to fracture are known to suffer. A regularized crack surface functional is introduced that Γ-converges to a sharp crack topology for vanishing length scale parameter. The evaluation of the phase-field follows the minimization of this crack surface functional. The phase-field variable can be treated as a geometric quantity whose evolution is coupled to the anisotropic bulk response in a modular format in terms of a crack driving state function. A stress-based anisotropic failure criterion is introduced whose maximum value from the deformation history drives the irreversible crack phase-field. The formulation is verified by the finite element based simulation of a real arterial cross-section undergoing rupture in a two-dimensional setting when subjected to inflation pressure. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The continuum damage model is based on a general thermodynamic framework for the modeling of rate and temperature dependent behavior of anisotropically damaged elastic-plastic materials subjected to fast deformation. The introduction of damaged and fictitious undamaged configurations allows the definition of damage tensors and the corresponding free energy functions lead to material laws affected by damage and temperature. The damage condition and the corresponding damage rule strongly depend on stress triaxiality. Furthermore, the rate and temperature dependence is reflected in a multiplicative decomposition of the plastic hardening and damage softening functions. The macro crack behavior is characterized by a triaxiality dependent fracture criterion. The continuum damage model is implemented into LS-DYNA as user defined material model. Corresponding numerical simulations of unnotched and notched tension tests with high strain rates demonstrate the plastic and damage processes during the deformation leading to final fracture numerically predicted by an element erosion technique. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号