首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
纳米科技的快速发展迫切需要对材料小尺度下的力学性能进行定量化测试与表征。将声学和原子力显微镜相结合的扫描探针声学显微技术(Atomic Force Acoustic Microscopy,AFAM)是近年来发展的一项定量化纳米力学测试方法,具有高分辨和无损的优势。本文围绕AFAM这一测试技术,首先详细论述了AFAM弹性力学性能和粘弹性力学性能定量化测试的基本原理以及两种成像模式;随后对AFAM方法研究相关的进展进行了分析归纳;接着对AFAM在纤维增强复合材料、智能材料、生物材料、纳米材料和薄膜中的应用进展进行了综述;最后对AFAM进行总结和展望。  相似文献   

2.
双模态振幅调制原子力显微术测试或成像过程中存在引力区和斥力区两种相互作用区.开展双模态振幅调制原子力显微术针尖样品相互作用区转变的研究,对于在特定作用区内成像的参数设置、相互作用区范围的控制,以及对成像结果的正确理解和解释尤为重要.将有限差分法和同相正交法相结合,采用数值模拟方法研究了探针模态自由振幅大小设定、样品力学性能变化以及模态激励频率的设置对双模态振幅调制原子力显微术相互作用区转变的影响.研究结果表明,探针模态自由振幅之和越大,则引力区向斥力区转变时的临界设定点越大,使探针位于引力区的设定点的范围越小.样品的弹性模量越大、黏度系数越小,探针在接近样品过程中引力区向斥力区转变发生越早,即引力区设定点的范围越小.偏离自由共振频率对探针进行激励时,引力区的范围均小于以自由共振频率激励时的引力区范围,探针运动状态的突变并不一定对应相互作用区的转变,且不能将相位值是否高于或低于90°作为判定探针位于引力区或斥力区的依据.  相似文献   

3.
双模态振幅调制原子力显微术相互作用区转变研究   总被引:1,自引:1,他引:0  
周锡龙  李法新 《力学学报》2018,50(5):1104-1114
双模态振幅调制原子力显微术测试或成像过程中存在引力区和斥力区两种相互作用区. 开展双模态振幅调制原子力显微术针尖样品相互作用区转变的研究, 对于在特定作用区内成像的参数设置、相互作用区范围的控制, 以及对成像结果的正确理解和解释尤为重要. 将有限差分法和同相正交法相结合, 采用数值模拟方法研究了探针模态自由振幅大小设定、样品力学性能变化以及模态激励频率的设置对双模态振幅调制原子力显微术相互作用区转变的影响. 研究结果表明, 探针模态自由振幅之和越大, 则引力区向斥力区转变时的临界设定点越大, 使探针位于引力区的设定点的范围越小. 样品的弹性模量越大、黏度系数越小, 探针在接近样品过程中引力区向斥力区转变发生越早, 即引力区设定点的范围越小. 偏离自由共振频率对探针进行激励时, 引力区的范围均小于以自由共振频率激励时的引力区范围, 探针运动状态的突变并不一定对应相互作用区的转变, 且不能将相位值是否高于或低于90°作为判定探针位于引力区或斥力区的依据.   相似文献   

4.
双模态振幅调制原子力显微术广泛应用于微纳米力学成像,然而成像过程中可能存在的对比度反转问题会造成成像结果的难以理解和解释。将有限差分法和同相正交法相结合,采用数值方法研究了不同力常数探针、样品组分力学性能以及成像参数设置对双模态振幅调制原子力显微术二阶模态振幅和相位对比度反转的影响。研究结果显示,对于硬探针,不同粘度系数组分上二阶模态振幅和相位对比度随弹性模量增加无反转产生。探针在不同弹性模量组分上二阶模态振幅对比度随粘度系数增加会产生反转,而二阶模态相位对比度则无反转产生。对于软探针,组分弹性模量或粘度系数增加会造成相互作用区转变,使探针响应产生跳变。软探针在组分弹性模量较高时二阶模态相位对不同粘度系数的对比度以及在粘度系数较小时对不同弹性模量组分的对比度均较硬探针更低。两种探针在不同弹性模量组分上二阶模态振幅对比度随着二阶模态自由振幅的增加会发生反转,而不同粘度系数下的对比度则未出现反转。此外,二阶模态自由振幅越小,则二阶模态相位对不同弹性模量或粘度系数组分的对比度越高。二阶模态振幅或相位对比度在不同相互作用区可能会发生反转,成像时应使相互作用区处于排斥区,可提高对比度。  相似文献   

5.
双模态振幅调制原子力显微术广泛应用于微纳米力学成像,然而成像过程中可能存在的对比度反转问题会造成成像结果的难以理解和解释。将有限差分法和同相正交法相结合,采用数值方法研究了不同力常数探针、样品组分力学性能以及成像参数设置对双模态振幅调制原子力显微术二阶模态振幅和相位对比度反转的影响。研究结果显示,对于硬探针,不同粘度系数组分上二阶模态振幅和相位对比度随弹性模量增加无反转产生。探针在不同弹性模量组分上二阶模态振幅对比度随粘度系数增加会产生反转,而二阶模态相位对比度则无反转产生。对于软探针,组分弹性模量或粘度系数增加会造成相互作用区转变,使探针响应产生跳变。软探针在组分弹性模量较高时二阶模态相位对不同粘度系数的对比度以及在粘度系数较小时对不同弹性模量组分的对比度均较硬探针更低。两种探针在不同弹性模量组分上二阶模态振幅对比度随着二阶模态自由振幅的增加会发生反转,而不同粘度系数下的对比度则未出现反转。此外,二阶模态自由振幅越小,则二阶模态相位对不同弹性模量或粘度系数组分的对比度越高。二阶模态振幅或相位对比度在不同相互作用区可能会发生反转,成像时应使相互作用区处于排斥区,可提高对比度。  相似文献   

6.
探针实验力学   总被引:3,自引:0,他引:3  
李喜德 《实验力学》2007,22(3):217-228
扫描探针显微系统的发明,使人们通过探针获得了原子级的微观结构,而近年的研究更是将探针技术应用于各种相互作用的检测和分析之中。一个以探针为检测平台的新的检测技术和系统已日益凸显并引起广泛关注。本文提出探针实验力学这一新概念,并以探针为主题介绍其在微纳尺度材料和结构的力学性能检测中的相关技术和典型应用。涉及探针检测系统及其标定、探针检测中的夹持和加栽、探针和试样表面的相互作用、探针微力传感器等。  相似文献   

7.
孙晋美  郭万林 《力学进展》2006,36(4):536-552
围绕包括扫描探针显微镜在内的各种探针技术下核酸、蛋白质等生物分子及生物材料的生物力学与力 - 电耦合实验研究, 较系统地总结了分子层次或纳米尺度下生物分子和材料的力学性能的扫描探针显微镜、光镊、磁镊等探针技术的实验研究方法和主要进展, 进而探讨了在``针尖'这个极小、极特殊环境下的分子生物物理力学研究状况.通过介绍借助探针技术研究相关生物物质的结构、力学、电学等性能以及提出的一些理论模型, 指出探针技术在生物分子(包括遗传物质和蛋白质)力学性能、纳米生物材料结构及分子仿生等研究中的广泛意义.提出多场耦合作用下的针尖的生物物理力学研究必定是将来研究的重点;将针尖的分子生物力学的物理实验研究与分子物理力学理论、计算科学相结合, 发展分子物理力学虚拟实验技术是本领域的一个重要发展方向.   相似文献   

8.
扫描探针显微系统的发明,使人们通过探针获得了原子级的微观结构,而近年的研究更是将探针技术应用于各种相互作用的检测和分析之中.一个以探针为检测平台的新的检测技术和系统已日益凸显并引起广泛关注.本文提出探针实验力学这一新概念,并以探针为主题介绍其在微纳尺度材料和结构的力学性能检测中的相关技术和典型应用.涉及探针检测系统及其标定、探针检测中的夹持和加载、探针和试样表面的相互作用、探针微力传感器等.  相似文献   

9.
脉冲放电止裂后裂尖处纳米尺度下的力学性能测试   总被引:3,自引:0,他引:3  
应用扫描探针显微镜SPM(scanning Probe Microscopy),对经过脉冲放电止裂后的40Cr模具钢裂尖处的组织进行了纳米尺度下的力学性能测试。测试结果表明:脉冲放电不仅使裂纹尖端钝化,同时使围绕裂尖处组织的细观硬度和细观杨氏弹性模量得到了提高,与宏观观测和分析规律相符,纳米尺度下微观力学性能测试结果为脉冲放电裂纹止裂技术的工程应用提供了微观尺度下的证据。  相似文献   

10.
以石墨烯为代表的二维材料因其原子级厚度、独特物理性质,成为近年来物理、化学、材料交叉学科的研究热点,在合成制备、结构表征、应用开发等方面的研究工作表明其在微纳机电系统、光电器件与功能复合材料领域有广泛且重要的应用前景。然而,由于二维材料结构与尺度的独特性,在其基本物性的理解方面仍存在许多未解决的问题,尤其是力学性能的表征,面临着诸多挑战。本文综述了二维材料本征力学性质和界面力学行为的微纳测试与表征技术的最新进展,例如纳米压痕技术、微孔鼓泡法等,并详细探讨了影响二维材料力学性能及行为的主要因素,分析了其微观尺度下的作用机制,以期通过物理或化学手段实现力学性能的调控。  相似文献   

11.
This review presents the fundamentals of atomic force microscopy (AFM) with microcantilever probes and their use as fluidic sensors for the measurement of micro/nanoscale transport properties. Over the last two decades, AFM has been widely used for, among other purposes, nanoscale topography, nanomechanical characterization, and intermolecular force spectroscopy. Furthermore, a microcantilever, an essential part of AFM, has been modified and exploited as a mechanical transducer for various sensing applications. Among many prospective uses, there appears to be great potential for micro/nanoscale sensing of fluid density and viscosity (Sect. 3.1), temperature (Sect. 3.2), pressure (Sect. 3.3), and flow velocity (Sect. 3.4). These micro/nanomechanical measurement techniques are expected to complement the advanced optical and electrical measurement techniques currently employed for micro/nanoscale fluidic sensors and also to fill the gap between microscale and nanoscale fluidic transport property measurements.  相似文献   

12.
A novel approach to nanoscale broadband viscoelastic spectroscopy is presented. The proposed approach utilizes the recently developed modeling-free inversion-based iterative control (MIIC) technique to achieve accurate measurement of the material response to the applied excitation force over a broad frequency band. Scanning probe microscope (SPM) and nanoindenter have become enabling tools to quantitatively measure the mechanical properties of a wide variety of materials at nanoscale. Current nanomechanical measurement, however, is limited by the slow measurement speed: the nanomechanical measurement is slow and narrow-banded and thus not capable of measuring rate-dependent phenomena of materials. As a result, large measurement (temporal) errors are generated when material is undergoing dynamic evolution during the measurement. The low-speed operation of SPM is due to the inability of current approaches to (1) rapidly excite the broadband nanomechanical behavior of materials, and (2) compensate for the convolution of the hardware adverse effects with the material response during high-speed measurements. These adverse effects include the hysteresis of the piezo actuator (used to position the probe relative to the sample); the vibrational dynamics of the piezo actuator and the cantilever along with the related mechanical mounting; and the dynamics uncertainties caused by the probe variation and the operation condition. In the proposed approach, an input force signal with frequency characteristics of band-limited white-noise is utilized to rapidly excite the nanomechanical response of materials over a broad frequency range. The MIIC technique is used to compensate for the hardware adverse effects, thereby allowing the precise application of such an excitation force and measurement of the material response (to the applied force). The proposed approach is illustrated by implementing it to measure the frequency-dependent plane-strain modulus of poly(dimethylsiloxane) (PDMS) over a broad frequency range extending over 3 orders of magnitude (~1 Hz to 4.5 kHz).  相似文献   

13.
A variety of methods exist to measure the stiffness of microfabricated cantilever beams such as those used as mechanical sensors in atomic force microscopy (AFM). In order for AFM to be used as a quantitative small force measurement tool, these methods must be validated within the International System of Units (SI). To this end, two different contact techniques were used to calibrate the spring constant of a cantilever beam. First, a dynamic indentation-based method was used to measure the spring constant of a rectangular cantilever beam. These results were then compared against an SI-traceable spring constant measurement from an electrostatic force balance (EFB). The measurements agree within experimental uncertainty and within 2% for spring constants greater than 2 N/m. The use of this cantilever beam as a transfer artifact for in situ AFM cantilever calibration was then evaluated in comparison to the thermal calibration method. Excellent agreement is seen between these techniques, establishing the consistency of the thermal and dynamic indentation methods with SI-traceable contact cantilever calibration for the rectangular cantilever geometry tested. Disclaimer: This article is authored by employees of the U.S. federal government, and is not subject to copyright. Commercial equipment and materials are identified in order to adequately specify certain procedures. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.  相似文献   

14.
A review of MEMS-based microscale and nanoscale tensile and bending testing   总被引:4,自引:0,他引:4  
Thin films at the micrometer and submicrometer scales exhibit mechanical properties that are different than those of bulk polycrystals. Industrial application of these materials requires accurate mechanical characterization. Also, a fundamental understanding of the deformation processes at smaller length scales is required to exploit the size and interface effects to develop new and technologically attractive materials. Specimen fabrication, small-scale force and displacement generation, and high resolution in the measurements are generic challenges in microscale and nanoscale mechanical testing. In this paper, we review small-scale materials testing techniques with special focus on the application of microelectromechanical systems (MEMS). Small size and high force and displacement resolution make MEMS suitable for small-scale mechanical testing. We discuss the development of tensile and bending testing techniques using MEMS, along with the experimental results on nanoscale aluminum specimens.  相似文献   

15.
GE Lin 《力学进展》1971,48(1):1811
基于原子力显微镜技术的力谱技术是一种高灵敏度的力学检测方法.它能够以前所未有的精度, 在微观生物力学领域表征组织、细胞、生物膜、蛋白质、核酸、功能材料等目标对象, 探索其包括形貌、化学信息、导电性、静电力以及生物学特性在内的等信息, 并且能够对其进行分子级别精度的三维操纵. 从而对分子结构与构象变化, 分子间的相互作用以及反应历程实现单分子水平的实时--原位观测, 提供了其他测试方法不能完成的实验设计之可能性.本文首先介绍了原子力显微镜及其力谱技术的原理, 以及影响测量结果的各个参数的物理意义; 其次按照单个目标对象与配对目标对象的区分方式, 详细介绍了力谱技术在微观生物力学各个尺度上的研究进展; 之后介绍了力谱技术结合成像模式下的发展和应用; 最后对设备的改进和本研究领域发展方向进行了展望.  相似文献   

16.
葛林 《力学进展》2018,48(1):1811
基于原子力显微镜技术的力谱技术是一种高灵敏度的力学检测方法.它能够以前所未有的精度, 在微观生物力学领域表征组织、细胞、生物膜、蛋白质、核酸、功能材料等目标对象, 探索其包括形貌、化学信息、导电性、静电力以及生物学特性在内的等信息, 并且能够对其进行分子级别精度的三维操纵. 从而对分子结构与构象变化, 分子间的相互作用以及反应历程实现单分子水平的实时--原位观测, 提供了其他测试方法不能完成的实验设计之可能性.本文首先介绍了原子力显微镜及其力谱技术的原理, 以及影响测量结果的各个参数的物理意义; 其次按照单个目标对象与配对目标对象的区分方式, 详细介绍了力谱技术在微观生物力学各个尺度上的研究进展; 之后介绍了力谱技术结合成像模式下的发展和应用; 最后对设备的改进和本研究领域发展方向进行了展望.   相似文献   

17.
The present text reviews the fundamentals of amplitude-modulation atomic force microscopy (AM-AFM), which is frequently also referred to as dynamic force microscopy, non-contact atomic force microscopy, or “tapping mode” AFM. It is intended to address two different kinds of readerships. First, due to a thorough coverage of the theory necessary to explain the basic features observed in AM-AFM, it serves theoreticians that would like to gain overview on how nanoscale cantilevers interacting with the surrounding environment can be used to characterize nanoscale features and properties of suitable sample surfaces. On the other hand, it is designed to introduce experimentalists to the physics underlying AM-AFM measurements to a degree that is not too specialized, but sufficient to allow them measuring the quantities they need with optimized imaging parameters.More specifically, this article first covers the basics of the various driving mechanisms that are used in AFM imaging modes relying on oscillating cantilevers. From this starting point, an analytical theory of AM-AFM is developed, which also includes the effects of external resonance enhancement (“Q-Control”). This theory is then applied in conjunction with numerical simulations to various situations occurring while imaging in air or liquids. In particular, benefits and drawbacks of driving exactly at resonance frequency are examined as opposed to detuned driving. Finally, a new method for the continuous measurement of the tip-sample interaction force is discussed.  相似文献   

18.
The present paper reports the development of an in situ nanotensilometer that enables highly reliable mechanical tensile testing on individual micro-/nano-scale structures. The device features independent measurement of force and displacement histories in the specimen with nanoNewton force and sub-nanometer displacement resolutions, respectively. Moreover, the device is well suited for in situ testing of free-standing micro/nano-structures within a high resolution scanning electron microscope (SEM), which permits continuous high-resolution imaging of the specimen during straining. The device is comprised of two main parts: (a) a three-plate capacitive transducer that doubles up both as an actuator and a force sensor, and (b) a commercially available nanomanipulator that facilitates transportation and positioning of nanoscale structures with sub-nanometer precision. In order to conduct the mechanical tests the ends of the specimen are attached to the probe tips of the device using ion-beam induced deposition. The general capabilities and features of the nanotensilometer are illustrated by presenting results of nanomechanical tensile tests on electrospun polyaniline microfibers.  相似文献   

19.
In a conventional dynamic atomic force microscopy (AFM), observing the flexural characteristics of a cantilever subjected to the tip–sample interaction is for extracting the topography and the material properties of a sample’s surface. Recently, Sahin et al. (2007) found that it is essential for understanding surface properties to design a cantilever with an eccentric tip and observe its coupled flexural–torsional characteristics. For effectively analyzing the flexural and torsional signals simultaneously, one has to find out the mode of a cantilever that the ratio of the tip gradient of flexural deformation and the tip torsional angle is comparable. Moreover, the development of an analytical model that can accurately simulate the surface-coupled dynamics of the cantilever is important for quantitative and qualitative understanding of measured results. In this paper, an analytical model of a cantilever with an eccentric tip and subjected to a nonlinear tip–sample force is established. The analytical solution is derived. It is found that the first two modes are the flexural motion and the third mode is the coupled flexural–torsional motion. Finally, the influences of several parameters on the tip angle ratio and frequency shift are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号