首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Most proteins are hydrophilic and poorly encapsulated into the hydrophobic matrix of solid lipid nanoparticles (SLN). To solve this problem, poly (lactic-co-glycolic acid) (PLGA) was utilized as a lipophilic polymeric emulsifier to prepare hydrophilic protein-loaded SLN by w/o/w double emulsion and solvent evaporation techniques. Hydrogenated castor oil (HCO) was used as a lipid matrix and bovine serum albumin (BSA), lysozyme and insulin were used as model proteins to investigate the effect of PLGA on the formulation of the SLN. The results showed that PLGA was essential for the primary w/o emulsification. In addition, the stability of the w/o emulsion, the encapsulation efficiency and loading capacity of the nanoparticles were enhanced with the increase of PLGA concentration. Furthermore, increasing PLGA concentration decreased zeta potential significantly but had no influence on particle size of the SLN. In vitro release study showed that PLGA significantly affected the initial burst release, i.e. the higher the content of PLGA, the lower the burst release. The released proteins maintained their integrity and bioactivity as confirmed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and biological assay. These results demonstrated that PLGA was an effective emulsifier for the preparation of hydrophilic protein-loaded SLN.  相似文献   

2.
In this study, water-in-oil (W/O) miniemulsion was used as nanoreactor to prepare solid lipid nanoparticles (SLN) by solvent diffusion method. n-Hexane, Tween 80 and Span 80 were used as the oil phase and surfactant combination for preparation of W/O miniemulsion, respectively. The stable miniemulsion with the particle size of 27.1 ± 7.6 nm was obtained when the composition of water/Tween 80/Span 80/n-hexane was 1 ml/18 mg/200 mg/10 ml. Clobetasol propionate (CP) was used as a model drug. The physicochemical properties of the SLN, such as particle size, zeta potential, surface morphology, drug entrapment efficiency, drug loading capacity and in vitro drug release behaviors were investigated, comparing with those of SLN prepared by conventional aqueoethod. The SLN prepared by the novel method displayed smaller particles size and higher dus solvent diffusion mrug entrapment efficiency than those of SLN prepared by the conventional method. The drug entrapment efficiency decreased with increasing of charged amount of drug, and 15.9% of drug loading was achieved as the charged amount of drug was 20%. The in vitro drug release tests indicated that the drug release rate was faster than that of SLN prepared by the conventional method, and the drug content in SLN did not affect the in vitro drug release profile.  相似文献   

3.
This study was performed to develop solid lipid nanoparticles of water soluble drug ciprofloxacin HCl using quick solvent diffusion evaporation technique (ouzo effect). A statistical central composite rotatable design was used to study the effect of independent variables. In the subsequent step, optimized SLN were further compared with nanostructured lipid carriers and nanoemulsion for particle size, zeta potential, drug entrapment, drug release, and stability. Comparative study revealed that the drug encapsulation efficiencies were enhanced by adding the Capmul MCM C8 into the solid lipid nanoparticles. The in vitro drug release study of all three formulations showed rapid release for nanoemulsion while controlled release for SLN. Stability study of all the formulation proved that nanostructured lipid carrier and SLN could prevent the drug expulsion during the storage period. Results of the study suggested that the SLN and nanostructured lipid carriers produced by the principle of ouzo effect could potentially be exploited for better drug entrapment efficiency and controlled drug release of water soluble actives.  相似文献   

4.
Premix membrane emulsification is a promising method for the production of colloidal oil-in-water emulsions as drug carrier systems for intravenous administration. The present study investigated the possibility of preparing medium-chain triglyceride emulsions with a mean particle size below 100 nm and a narrow particle size distribution using sucrose laurate as an emulsifier. To manufacture the emulsions, a coarse pre-emulsion was repeatedly extruded through alumina membranes (Anodisc) of 200 nm, 100 nm and 20 nm nominal pore size. When Anodisc membranes with 20 nm pore size were employed, nanoemulsions with z-average diameters of about 50 nm to 90 nm and polydispersity indices smaller than 0.08 could be obtained. Particle growth due to Ostwald ripening was observed over 18 weeks of storage. The Ostwald ripening rate linearly depended on the emulsifier concentration and the concentration of free emulsifier, indicating that micelles in the aqueous phase accelerated the Ostwald ripening process. Long-term stability of the nanoemulsions could be achieved by using a minimised emulsifier concentration or by osmotic stabilisation with soybean oil added in a mass ratio of 1:1 to the lipid phase.  相似文献   

5.
以高效氯氰菊酯为芯材, 乙基纤维素为壁材, 采用溶剂蒸发法制备了微胶囊, 并对其理化性能进行表征, 通过单因素实验研究了工艺参数对微胶囊外观形貌、 粒径大小及分布、 包封率、 载药量和缓释性能的影响. 结果表明, 乳化剂种类和剪切时间可以显著影响微胶囊的外观形貌; 随着乳化剂用量增大, 微胶囊粒径减小, 分布变窄, 当Tween-80用量从4%增加至8%时, 微胶囊平均粒径从59.9 μm减少到29.8 μm, 跨距也从1.21减少到0.72. 随着芯壁比(质量比)减小, 微胶囊粒径和包封率均逐渐增大, 载药量逐渐减小, 当芯壁比为1:1.75时, 包封率可以达到70%以上. 微胶囊释放动力学模型符合Ritger-Peppas模型(lgQ=lgk+nlgt); 平均粒径相近而载药量不同时, 初期载药量最小的样品释放速率慢, 累积释放率低; 载药量相近而平均粒径不同时, 粒径大的样品释放速率低, 累积释放率也低.  相似文献   

6.
Abstract

The effects of lipid content and dilution on the properties and stability of nanostructured lipid carriers (NLCs) prepared from rambutan (Nephelium lappaceum L.) kernel fat were investigated. The β-carotene-loading capacity of the NLCs was also evaluated. NLCs containing various lipid phase concentrations (5, 10, and 15?wt%) were prepared using Tween 80 as the emulsifier with a lipid to emulsifier weight ratio of 1:0.2. The results showed that an increase in the lipid content up to 15?wt% had no effect on the zeta-potential, particle size and polydispersity index but resulted in a higher particle density. All samples showed no phase separation during storage at 25?°C for 28?days; however, the relative recrystallization index (RRI) increased. Dilution of concentrated NLC (15?wt%) to a lower lipid content (5 and 10?wt%) produced no differences in the particle characteristics and stability during storage. NLCs loaded with β-carotene at different concentrations (0, 0.5, and 1?wt% of the lipid phase) exhibited desirable characteristics and had high encapsulation efficiency (~97%) over 28?days of storage. These results demonstrated that NLC prepared from rambutan kernel fat can be used to entrap lipophilic bioactive components which could be used as ingredients in functional food products.  相似文献   

7.
Nanostructured lipid carriers (NLC) made from mixtures of solid and spatially incompatible liquid lipids were prepared by melt-emulsification. Their drug loading capacity and releasing properties of progesterone were compared with those of solid lipid nanoparticles (SLN), and the NLC prepared by solvent diffusion method. Monostearin (MS) and stearic acid (SA) were used as solid lipid, whilst the oleic acid (OA) was used as liquid lipid. Properties of carriers such as the particle size and its distribution, drug loading, drug encapsulation efficiency and drug release behavior were investigated. As a result, the drug encapsulation efficiencies were improved by adding the liquid lipid into the solid lipid of nanoparticles. The drug release behavior could be adjusted by the addition of liquid lipid, and the NLC with higher OA content showed the faster rate of drug releasing. NLC had higher efficiency of encapsulation and slower rate of drug release than those of NLC prepared by solvent diffusion method. On the other hand, the NLC with higher drug loading was obtained, though the drug encapsulation efficiency was decreased slightly due to the increase of the amount of drug. The NLC modified with polyethylene glycol (PEG) was also prepared by using polyethylene glycol monostearate (PEG-SA). It was observed that the incorporation of PEG-SA reduced the drug encapsulation efficiency, but increased the rate of drug release. A sample with almost complete drug release in 24 h was obtained by modifying with 1.30 mol% PEG-SA. It indicated that the modified NLC was a potential drug delivery system for oral administration.  相似文献   

8.
Nanostructured lipid carriers (NLC) made from mixtures of solid and spatially incompatible liquid lipids were prepared by melt-emulsification. Their drug loading capacity and releasing properties of progesterone were compared with those of solid lipid nanoparticles (SLN), and the NLC prepared by solvent diffusion method. Monostearin (MS) and stearic acid (SA) were used as solid lipid, whilst the oleic acid (OA) was used as liquid lipid. Properties of carriers such as the particle size and its distribution, drug loading, drug encapsulation efficiency and drug release behavior were investigated. As a result, the drug encapsulation efficiencies were improved by adding the liquid lipid into the solid lipid of nanoparticles. The drug release behavior could be adjusted by the addition of liquid lipid, and the NLC with higher OA content showed the faster rate of drug releasing. NLC had higher efficiency of encapsulation and slower rate of drug release than those of NLC prepared by solvent diffusion method. On the other hand, the NLC with higher drug loading was obtained, though the drug encapsulation efficiency was decreased slightly due to the increase of the amount of drug. The NLC modified with polyethylene glycol (PEG) was also prepared by using polyethylene glycol monostearate (PEG-SA). It was observed that the incorporation of PEG-SA reduced the drug encapsulation efficiency, but increased the rate of drug release. A sample with almost complete drug release in 24 h was obtained by modifying with 1.30 mol% PEG-SA. It indicated that the modified NLC was a potential drug delivery system for oral administration.  相似文献   

9.
Solid lipid nanoparticles (SLN) without drug and SLN loaded with chloroaluminum phthalocyanine (AlClPc) were prepared by solvent diffusion method in aqueous system and characterized by thermal analyses and X-ray diffraction (XRD) in this study. Determination of particle size, zeta potential (ZP), and encapsulation efficiency were also evaluated. SLN containing AlClPc of nanometer size with high encapsulation efficiency and ZP were obtained. The results indicated that the size of SLN loaded with AlClPc is larger than that of the inert particle, but ZP is not changed significantly with incorporation of the drug. In differential scanning calorimetry (DSC) curves, it was observed that the melting point of stearic acid (SA) isolated and in SLN occurred at 55 and 64 °C, respectively, suggesting the presence of different polymorphs. DSC also shows that the crystallinity state of SLN was much less than that of SA isolated. The incorporation of drug in SLN may have been favored by this lower crystallinity degree of the samples. XRD techniques corroborated with the thermal analytic techniques, suggesting the polymorphic modifications of stearic acid.  相似文献   

10.
The purpose of the present work was to design and investigate the potential of novel hydroxylpropyl-beta-cyclodextrin (HP-β-CD) and chitosan nanocarriers (NCs) for effective delivery of model, poorly water soluble drug simvastatin. The prepared system was characterized for particle size, particle size distribution (PDI), zeta potential, differential scanning calorimetery, x-ray diffraction, encapsulation efficiency and drug release studies. The results revealed that among the selected ratios of tripolyphosphate/chitosan, ratio 1:4 and 1:5 proved to be optimum in terms of particle size, particle distribution and drug release profile. The average size of nanoparticles increased from 516 to 617 and 464 to 562 nm for ratio 1:4 and 1:5 with increase in drug/HP-β-CD amount. To assess interactions and whether the simvastatin was incorporated in the NCs in its crystalline or amorphous form DSC and XRD were performed. These results suggest that the encapsulation process produces a marked decrease in crystallinity of simvastatin and/or confers to a nearly amorphous state of drug in NCs. Results reveled that with increase in the amount of HP-β-CD/drug the final loading of the NCs increased due to increased solubilization of simvastatin in the presence of HP-β-CD. The in vitro release profile of prepared NCs showed initial fast release (burst effect) followed by a delayed release pattern. In conclusion, these nanocarriers constitute a novel and efficient system for encapsulation and oral delivery of poorly soluble drugs.  相似文献   

11.
The purpose of this study was to improve the stability of dithranol, an effective drug for topical treatment of psoriasis. The influence of several formulations (microemulsions, O/W emulsion, gel emulsion, and gel) on the photodegradation kinetics of dithranol was investigated. The photodegradation rate was found to be related with the initial drug concentration and the nature of the vehicle. Solid lipid nanoparticles (SLN) were prepared by solvent injection technique to investigate whether the inclusion in the lipid matrix could increase the stability of the drug. Physicochemical characterization of the particles by optical microscopy, photon correlation spectroscopy (PCS) and differential scanning calorimetry (DSC) revealed that solvent injection is a suitable approach for dithranol-loaded SLN preparation. The obtained particle sizes were between 230 and 270 nm; up to 92% of drug was entrapped in the SLN. The photodegradation kinetic constants (kc) of dithranol in SLN were related with the medium in which the particles were dispersed. The stability over time of dithranol was also investigated storing the samples at 25°C and the results showed that the drug inclusion in SLN dispersed in gel emulsion reduced its rate of degradation.  相似文献   

12.
聚苯乙烯-甲基丙烯酸甲酯功能微球的合成   总被引:3,自引:0,他引:3  
本文研究了在用乳液聚合法合成苯乙烯/甲基丙烯酸甲酯共聚功能微球过程中,乳化剂、电解质、油水比、溶剂等因素对共聚胶乳微粒的粒径大小和粒度分布的影响。结果表明,乳化剂的种类和浓度对生成胶乳微粒的粒径有很大影响,且胶乳微粒的粒径随电解质浓度的增加以及油水比的减小而减小,加入溶剂可明显提高所得微粒的粒径。  相似文献   

13.
Solid lipid nanoparticles (SLN) made of different triglycerides (TG) in the presence and in the absence of various modified α- and γ-cyclodextrins (CD) were prepared by the solvent injection technique. A new synthesis of lipophilic derivatives of γ- CD was developed in this work. Curcumin (CU), a natural polyphenol with antitumor, antioxidant and anti-inflammatory properties, was used as model drug. SLNs mean sizes were in the 250–800 nm range and afforded CU entrapment efficiency in the 12–85% range. The presence of CD derivatives with almost the same chain length of TG induced an improvement of nanoparticle characteristics decreasing mean size values and increasing CU entrapment efficiency. A significant reduction in CU photodegradation was noted only when the drug was vehicled in tristearin-SLN, which became less pronounced in the presence of CD-derivatives, determining a loss in photoprotection. The hydrolytic stability of curcumin was highly improved by drug loading in tristearin-SLN, and only slightly by loading it in tricaprin-SLN, and this seemed not to be influenced by the presence of CD derivatives. Skin uptake studies revealed an increase in CU skin accumulation when CU was loaded in SLN obtained with all CD derivatives, particularly with most lipophilic one.  相似文献   

14.
明胶微球粒径控制的研究   总被引:2,自引:0,他引:2  
采用乳化-凝聚法,在油包水(w/o)的体系中对明胶微球(GMs)粒径、微球的形态和分散性等进行了研究.扫描电子显微镜(SEM)和粒径分布曲线的结果表明在乳化体系中,提高明胶溶液的浓度或水油比例,明胶微球的粒径增大;增加乳化剂的用量,微球的粒径减小;选择合适的乳化时间和搅拌速率,可以改善微球的分散性和表面光滑程度.同时,通过调控实验条件,在明胶溶液浓度0.100 g/mL,水油比1/5,乳化剂浓度0.05g/mL时研制出了平均粒径为3.58μm的表面光滑、分散性好的明胶微球.  相似文献   

15.
In the present study eugenol loaded solid lipid nanoparticles (SLN) was prepared and characterized for particle size, polydispersity index, zeta potential, encapsulation efficiency, in vitro release and in vivo antifungal activity. Effect of addition of liquid lipid (caprylic triglyceride) to solid lipid (stearic acid) on crystallinity of lipid matrix of SLN was determined by using Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) techniques. Transmission electron microscopy (TEM) was carried out to determine the morphology of SLN. In vivo antifungal activity of eugenol loaded lipid nanoparticles was evaluated by using a model of oral candidiasis in immunosuppressed rats. Particle size results showed that d(90) of SLN(1) (single lipid matrix) and SLN(2) (binary lipid matrix) was 332±14.2 nm and 87.8±3.8 nm, respectively. Polydispersity index was found to be in the range of 0.27-0.4 which indicate moderate size distribution. Encapsulation efficiency of SLN(2) (98.52%) was found to be more than that of SLN(1) (91.80%) at same lipid concentration (2%, w/v). Increasing of the solid lipid concentration from 2% (w/v) to 4% (w/v) resulted in increase in encapsulation efficiency and the particle size. SLN(2) shows faster release of eugenol than that of SLN(1) due to smaller size and presence of liquid lipid which provide less barriers to the diffusion of drug from matrix. TEM study reveals the spherical shape of SLN. FT-IR, DSC and XRD results indicate less crystallinity of SLN(2) than that of SLN(1). In vivo studies show no significant difference in log cfu value of all the groups at 0 day. At 8th day, log cfu value of group treated with saline (control), standard antifungal agent, eugenol solution, SLN(1) and SLN(2) was found to be 3.89±.032, 2.69, 3.39±.088, 3.19±.028 and 3.08±0.124, respectively. The in vivo study results indicate improvement in the antifungal activity of eugenol when administrated in the form of SLN.  相似文献   

16.
Latex emulsions depend strongly on the polymer composition, and particle size distribution, which in turn, is a function of the preparation of the latex and on the formulation and composition variables. This study reports measurements of particle size and particle size distribution of latex emulsions as function of the reaction time and the type and concentration of emulsifier by using the multiwavelength spectroscopy technique. Results show changes in the particle size of latex emulsions with the reaction time, obtaining larger particles and broader distributions with increasing of Tween 80 ratio. The steric stabilization provides the sole nonionic emulsifier is not enough to protect the polymer particle, causing the flocculation among the interactive particles, resulting in unstable latex. However, latex emulsions prepared with Tween 80 ratio <70 wt.% can stabilize efficiently the nucleated particles, probably due to the effects provided by both, the electrostatic and steric stabilization mechanisms. The same effect is shown in the curves of conversion (%) as a function of reaction time, resulting in slower polymerization rate for Tween 80 ratio >70 wt.%. On the other hand, smaller polymer particles, in all range of emulsifier mixture, have been obtained to higher emulsifier concentration.  相似文献   

17.
The aim of the present study was to develop controlled drug delivery systems based on nanotechnology. Two different nanocarriers were selected, chitosan-alginate nanoparticles as hydrophilic and solid lipid nanoparticles as lipophilic carriers. Nanoparticles were prepared and characterized by evaluating particle size, zeta potential, SEM pictures, DSC thermograms, percentage of drug loading efficiency, and drug release profile. The particle size of SLNs and Chi/Alg nanoparticles was 291 ± 5 and 520 ± 16. Drug loading efficiency of Chi/Alg and SLN particles were 68.98 ± 5.5% and 88 ± 4.5%. The drug release was sustained with chitosan-alginate system for about 45 hours whereas for SLNs >98% of the drug was released in 2 hours. Release profile did not change significantly after freeze drying of particles using cryoprotector. Results suggest that under in vitro condition chitosan/alginate systems can act as promising carriers for ciprofloxacin and may be used as an alternative system in sustained delivery of ciprofloxacin.  相似文献   

18.
In this work, solid lipid nanoparticles (SLN) have been prepared from water-in-oil-in-water double emulsion, using monocaprate as solid lipid, sorbitan monooleate (Span 80) and polyoxyethylene sorbitan monolaurate (Tween 20) as emulsifier, and puerarin as target drug. The morphology of SLN with drug loaded or not was investigated by the transmission electron microscope (TEM). The crystal order and structure of particles were studied by differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD), respectively. The results indicate that the diameters of SLN with puerarin inside are larger than those without drugs. The analysis of WAXD and DSC shows that the state of crystallinity SLN prepared by double emulsion method was worse than that of SLN prepared by microemulsion. And also the drug-loaded SLN presents a less ordered crystallinity than the drug-free SLN. But both the drug-free and drug-loaded SLN exist in an amorphous state. The reasons of the phenomenon have been discussed.  相似文献   

19.
A series of gelatin microspheres (GMs) were prepared through emulsification-coacervation method in water-in-oil (w/o) emulsions. The influence of preparation parameters on particle size, surface morphology, and dispersion of GMs was examined. The studied preparation parameters include concentration of gelatin solutions, concentration of the emulsifier, w/o ratio, emulsifying time, stirring speed, and so on. The surface morphology, dispersion, and particle sizes of GMs were determined by the scanning electron microscopy (SEM), SemAfore 4 Demo software, and particle size distribution graphic charts. The experimental results indicated that increasing the concentration of gelatin solution would increase the particle size of GMs. When the solution concentration increased from 0.050 to 0.200 g/mL gradually, the particle size increased correspondingly. The relationship between the two quantities was linear. On the contrary, increasing the concentration of the emulsifier would decrease the particle size of GMs. Furthermore, the particle size reduced quickly at initial time and slowed down latterly. With the increase of emulsifier concentration from 0 to 0.020 g/mL, themean diameters ofGMsdecreased from 17.32 to 5.38 μm. However, the particle size dwindled slowly when emulsifier concentration was higher than 0.020 g/mL. The excellent result was obtained with the condition of 0.050 g/mL of emulsifier concentration, 0.100 g/mL of gelatin solution concentration, 1/5 of w/o ratio, 10 min of emulsifying time, and 900 r/min of the stirring speed. The GMs prepared at this condition had the smallest sizes, the narrowest size distribution, the best spherical shape, and fluidity. The w/o ratio has the same influence on particle size of GMs as that of gelatin solution concentration. With the increase of w/o ratio, the average particle sizes increased linearly, and the surface of microspheres become smoother as well. It is supposed that w/o ratio can be used to change the diameters and surface morphologies of GMs. The emulsifying time has little influence on the mean diameters of GMs, but it affects the dispersion of GMs apparently. When the emulsifying time was shorter than 5 min, the GMs had bad dispersion. After increasing the emulsifying time to 13 min, the dispersion of GMs changed greatly, whereas the dispersion of GMs became bad again when the emulsifying time was longer than 13 min. According to the experimental results, 13 min was considered to be the best emulsifying time. The stirring speed has the similar influence on GMs’ morphologies as that of emulsifying time. Slow stirring rate made large size distribution and bad spherical shape of GMs; excessive stirring speed results in aggregation among GMs likewise. The smaller size distribution and better spherical shape of GMs were observed under the stirring rate between 500 and 1500 r/min by SEM. In conclusion, increasing the concentration of gelatin solution or w/o ratio would increase the particle sizes of GMs, increasing the concentration of the emulsifier would decrease the sizes of GMs at proper emulsifying time, and stirring speed would get the best spherical shape of GMs. These are the basic laws governing the design and manufacture of the GMs. __________ Translated from Acta Polymerica Sinica, 2008, 8 (in Chinese)  相似文献   

20.
The suitability of solid lipid nanoparticles (SLN) for the encapsulation of risperidone (RISP), an antipsychotic lipophilic drug, was assessed for oral administration. The hot high pressure homogenization (HPH) and the ultrasound (US) technique were used as production methods for SLN. All the studies on the SLN formulations were done in parallel, in order to compare the results and conclude about the advantages and limitations of both techniques. The particle sizes were in the nanometer range for all prepared SLN formulations and the zeta potential absolute values were high, predicting good long-term stability. Optical analyses demonstrated the achievement of stable colloidal dispersions. Physicochemical characterization of dispersions and bulk lipids, performed by differential scanning calorimetry (DSC) and X-ray assays, support prediction of occurrence of drug incorporation in the SLN and good long term stability of the systems. The toxicity of SLN with Caco-2 cells and the existence of contaminations derived from the production equipments were assessed by the (4,5-dimethylthiazol-2-yl)2,5-diphenyl-tetrazolium bromide (MTT) assay. The results showed 90% of cell viability after SLN exposure, with no significant differences within all prepared formulations (p > 0.05). From this study, we conclude that SLN can be considered as efficient carriers for RISP encapsulation. Moreover, HPH and US revealed to be both effective methods for SLN production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号