首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
宋淑伟  孙蕊  赵洪  王暄  韩宝忠 《中国物理 B》2016,25(4):40305-040305
Starting from the Hamiltonian of the second quantization form, the weakly interacting Bose-Einstein condensate with spin-orbit coupling of Weyl type is investigated. It is found that the SU(2) nonsymmetric term, i.e., the spin-dependent interaction, can lift the degeneracy of the ground states with respect to the z component of the total angular momentum Jz, casting the ground condensate state into a configuration of zero Jz. This ground state density profile can also be affirmed by minimizing the full Gross-Pitaevskii energy functional. The spin texture of the zero Jz state indicates that it is a knot structure, whose fundamental group is π3(M)???040305????π3(S2)=Z.  相似文献   

2.
《中国物理 B》2021,30(6):66702-066702
We study the properties of Bose–Einstein condensates under a non-Hermitian spin–orbit coupling(SOC), induced by a dissipative two-photon Raman process. We focus on the dynamics of the condensate at short times, when the impact of decoherence induced by quantum jumps is negligible and the dynamics is coherently driven by a non-Hermitian Hamiltonian. Given the significantly modified single-particle physics by dissipative SOC, the interplay of non-Hermiticity and interaction leads to a quasi-steady-state phase diagram different from its Hermitian counterpart. In particular, we find that dissipation can induce a phase transition from the stripe phase to the plane-wave phase. We further map out the phase diagram with respect to the dissipation and interaction strengths, and finally investigate the stability of quasi-steady states through the time-dependent dissipative Gross–Pitaevskii equation. Our results are readily accessible based on standard experiments with synthetic spin–orbit couplings.  相似文献   

3.
计算分析了处于单模Fabry-Pérot腔内的无相互作用玻色-爱因斯坦凝聚体在引入自旋轨道耦合作用下的色散关系. F-P腔为冷原子系统提供了量子化的光晶格,利用紧束缚近似和平均场近似进行二次量子化,选取合适的腔参数得到单原子缀饰态能级的具体表达式.两束弱的Raman激光和外加磁场作用于玻色-爱因斯坦凝聚体,实现了有效的自旋轨道耦合,提供了一个人工规范势,使玻色-爱因斯坦凝聚体中产生了沿腔轴方向一维的高度可控的狄拉克点.  相似文献   

4.
The condensation of electron-hole pairs is studied at zero temperature and in the presence of a weak spin-orbit coupling (SOC) in coupled quantum wells. Under realistic conditions, a perturbative SOC can have observable effects in the order parameter of the condensate. First, the fermion exchange symmetry is absent. As a result, the condensate spin has no definite parity. Additionally, the excitonic SOC breaks the rotational symmetry yielding a complex order parameter in an unconventional way; i.e., the phase pattern of the order parameter is a function of the condensate density. This is manifested through finite off-diagonal components of the static spin susceptibility, suggesting a new experimental method to confirm an excitonic condensate.  相似文献   

5.
Motivated by recent experiments carried out by Spielman's group at NIST, we study a general scheme for generating families of gauge fields, spanning the scalar, spin-orbit, and non-Abelian regimes. The NIST experiments, which impart momentum to bosons while changing their spin state, can in principle realize all these. In the spin-orbit regime, we show that a Bose gas is a spinor condensate made up of two non-orthogonal dressed spin states carrying different momenta. As a result, its density shows a stripe structure with a contrast proportional to the overlap of the dressed states, which can be made very pronounced by adjusting the experimental parameters.  相似文献   

6.
We investigate the effects of Rashba-type spin-orbit coupling (SOC) on the condensed density and superfluid density tensor of a two-component Fermi gas in the BCS-BEC crossover at zero temperature. In anisotropic three dimensions (3D), we find that SOC has an opposite effect on condensation (enhanced) and superfluidity (suppressed in the SOC direction), and this effect becomes most pronounced for very weak interactions and the SOC strength being larger than a characteristic value. Furthermore, as functions of SOC strength, the condensed density changes monotonically for all interaction parameters, while the superfluid density has a minimum when the interaction parameter is below a critical value. We also discuss the isotropic two-dimensional case where analytical expressions for the gap and number equations are obtained and the same phenomena are found as that of the 3D case.  相似文献   

7.
《Physics letters. A》2019,383(24):2883-2890
The property of matter-wave vector solitons in a spin-1 Bose-Einstein condensate with spin-orbit and Zeeman couplings is investigated by multiscale perturbation method. The excitation spectrum and the corresponding state vectors of the system are obtained analytically, and they can be adjusted by the parameters of the system. The bright and dark vector solitons are formulated by reducing the three-component coupled Gross-Pitaeviskii equations to a standard nonlinear Schrödinger equation, which has the solutions of the bright and dark solitons with positive or negative mass depending on the product of the effective dispersive and nonlinear coefficients. The moving vector solitons are demonstrated by adjusting specific momentum near the energy minimum. Finally, the magnetized features of the vector solitons are discussed by the spin polarization of the system.  相似文献   

8.
We study the ground-state phases of two-dimensional rotating spin–orbit coupled spin-1/2 Bose–Einstein condensates (BECs) in a gradient magnetic field. The competition between gradient magnetic field, spin–orbit coupling and rotation leads to a variety of ground-state phase structures. In the weakly rotation regime, as the increase of gradient magnetic field strength, the BECs experiences a phase transition from the unstable phase to the single vortex-line phase. The unstable phase presents the vortex lines structures along the off-diagonal direction. With magnetic field gradient strength increasing, the number of vortex lines changes accordingly. As the magnetic field gradient strength increases further, the single vortex-line phase with a single vortex line along the diagonal direction is formed. The phase diagram shows that the boundary between the two phases is linear with the relative repulsion λ≥1 and is nonlinear with λ<1. In the relatively strong rotation regime, in addition to the unstable phase and the single vortex-line phase, the vortex-ring phase is formed for the strong magnetic field gradient and rapid rotation. The vortex-ring phase shows the giant and hidden vortex structures at the center of ring. The strong magnetic field gradient makes the number of the vortices around the ring unchanged.  相似文献   

9.
《中国物理 B》2021,30(10):106701-106701
We consider two-dimensional spinor F = 1 Bose–Einstein condensates in two types of radially-periodic potentials with spin–orbit coupling, i.e., spin-independent and spin-dependent radially-periodic potentials. For the Bose–Einstein condensates in a spin-independent radially-periodic potential, the density of each component exhibits the periodic density modulation along the azimuthal direction, which realizes the necklacelike state in the ferromagnetic Bose–Einstein condensates. As the spin-exchange interaction increases, the necklacelike state gradually transition to the plane wave phase for the antiferromagnetic Bose–Einstein condensates with larger spin–orbit coupling. The competition of the spin-dependent radially-periodic potential, spin–orbit coupling, and spin-exchange interaction gives rise to the exotic ground-state phases when the Bose–Einstein condensates in a spin-dependent radially-periodic potential.  相似文献   

10.
张华峰  陈方  郁春潮  孙利辉  徐大海 《中国物理 B》2017,26(8):80304-080304
Properties of the ground-state solitons, which exist in the spin–orbit coupling(SOC) Bose–Einstein condensates(BEC) in the presence of optical lattices, are presented. Results show that several system parameters, such as SOC strength,lattice depth, and lattice frequency, have important influences on properties of ground state solitons in SOC BEC. By controlling these parameters, structure and spin polarization of the ground-state solitons can be effectively tuned, so manipulation of atoms may be realized.  相似文献   

11.
The phenomena of Bose-Einstein condensation is discussed for particles in a box with attractive walls. Variation of the elasticity has the following effects, a) the critical temperature, fugacity, etc. vary, b) separation of phases occurs, c) condensation in one and two dimensions is possible.  相似文献   

12.
13.
We report on the generation of a Bose-Einstein condensate in a gas of chromium atoms, which have an exceptionally large magnetic dipole moment and therefore underlie anisotropic long-range interactions. The preparation of the chromium condensate requires novel cooling strategies that are adapted to its special electronic and magnetic properties. The final step to reach quantum degeneracy is forced evaporative cooling of 52Cr atoms within a crossed optical dipole trap. At a critical temperature of T(c) approximately 700 nK, we observe Bose-Einstein condensation by the appearance of a two-component velocity distribution. We are able to produce almost pure condensates with more than 50,000 condensed 52Cr atoms.  相似文献   

14.
Hao Zhu 《中国物理 B》2022,31(4):40306-040306
We investigate the vortex structures excited by Ioffe-Pritchard magnetic field and Dresselhaus-type spin-orbit coupling in F=2 ferromagnetic Bose-Einstein condensates. In the weakly interatomic interacting regime, an external magnetic field can generate a polar-core vortex in which the canonical particle current is zero. With the combined effect of spin-orbit coupling and magnetic field, the ground state experiences a transition from polar-core vortex to Mermin-Ho vortex, in which the canonical particle current is anticlockwise. For fixed spin-orbit coupling strengths, the evolution of phase winding, magnetization, and degree of phase separation with magnetic field are studied. Additionally, with further increasing spin-orbit coupling strength, the condensate exhibits symmetrical density domains separated by radial vortex arrays. Our work paves the way to explore exotic topological excitations in high-spin systems.  相似文献   

15.
Spin-orbit coupling (SOC), the interaction between the spin and momentum of a quantum particle, is crucial for many important condensed matter phenomena. The recent experimental realization of SOC in neutral bosonic cold atoms provides a new and ideal platform for investigating spin-orbit coupled quantum many-body physics. In this Letter, we derive a generic Gross-Pitaevskii equation as the starting point for the study of many-body dynamics in spin-orbit coupled Bose-Einstein condensates. We show that different laser setups for realizing the same SOC may lead to different mean-field dynamics. Various ground state phases (stripe, phase separation, etc.) of the condensate are found in different parameter regions. A new oscillation period induced by the SOC, similar to the Zitterbewegung oscillation, is found in the center-of-mass motion of the condensate.  相似文献   

16.
Hao Zhu 《中国物理 B》2022,31(6):60305-060305
We investigate the anisotropic spin-orbit coupled spin-2 Bose-Einstein condensates with Ioffe-Pritchard magnetic field. With nonzero magnetic field, anisotropic spin-orbit coupling will introduce several vortices and further generate a vortex chain. Inside the vortex chain, the vortices connect to each other, forming a line along the axis. The physical nature of the vortex chain can be explained by the particle current and the momentum distribution. The vortex number inside the vortex chain can be influenced via varying the magnetic field. Through adjusting the anisotropy of the spin-orbit coupling, the direction of the vortex chain is changed, and the vortex lattice can be triggered. Moreover, accompanied by the variation of the atomic interactions, the density and the momentum distribution of the vortex chain are affected. The realization and the detection of the vortex chain are compatible with current experimental techniques.  相似文献   

17.
18.
Li Wang 《中国物理 B》2021,30(11):110312-110312
The ground state properties of the rotating Bose-Einstein condensates (BECs) with SU(3) spin-orbit coupling (SOC) in a two-dimensional harmonic trap are studied. The results show that the ferromagnetic and antiferromagnetic systems present three half-skyrmion chains at an angle of 120° to each other along the coupling directions. With the enhancement of isotropic SU(3) SOC strength, the position of the three chains remains unchanged, in which the number of half-skyrmions increases gradually. With the increase of rotation frequency and atomic density-density interaction, the number of half-skyrmions on the three chains and in the regions between two chains increases gradually. The relationships of the total number of half-skyrmions on the three chains with the increase of SU(3) SOC strength, rotation frequency and atomic density-density interaction are also given. In addition, changing the anisotropic SU(3) SOC strength can regulate the number and morphology of the half-skyrmion chains.  相似文献   

19.
We propose a practically accessible non-mean-field ground state of Bose-Einstein condensation, which occurs in an interspecies two-particle entangled state, and is thus described by an entangled order parameter. A suitably defined entanglement entropy is used as the characterization of the non-mean-field nature, and is found to persist in a wide parameter regime. The interspecies entanglement leads to novel interference terms in the dynamical equations governing the single-particle orbital wave function. Experimental feasibility and several methods of probe are discussed. We urge the study of multichannel scattering between different species of atoms.  相似文献   

20.
A single-band Hubbard hamiltonian with spin-orbit coupling included in the hopping integral is solved in terms of the solution with no spin-orbit coupling. For an openended linear chain the spectrum is independent ofu/t=tan θ, whereu(t) measures the spin-orbit (ordinary) contribution to the hopping integral; and for the half-filled band the spin-correlations are spiral-like with turn angle 2θ+π. In the case of a ring ofN sites the spectrum is periodic in θ with period 2π/N; for the half-filled-band case the period is π/N in the zero-band-width limit. Generalizations to higher dimensions are noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号