首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Semi-empirical molecular orbital calculations were carried out for the compounds (C2H5)3As, (C2H5)3Ga and RAsH2 (R = C2H5, i-C3H7, i-C4H9, and t-C4H9) by using the CNDO/2-U program, and their capability of β-elimination reaction is compared on the basis of the torsion energy to the transition state, electrostatic interactions and orbital overlapping between the central atom and the β-hydrogen, and bond order of the metal-carbon, and carbon-hydrogen bond. In the comparison of (C2H5)3As with (C2H5)3Ga, we found that the β-elimination of (C2H5)3As could hardly be expected to take place in the thermal decomposition. The capability of β-elimination would be smaller in C2H5AsH2 than that in (C2H5)3As. Moreover when the ethyl group is replaced by a t-butyl group in RAsH2, the β-elimination reaction appears to become more difficult and a large possibility for a radical process is suggested.  相似文献   

2.
Based on the experimental zinc blende and wurtzite structures of CdS nanocrystals, five new CdS clusters (Cd3S3, (Cd3S3)2, (Cd3S3)3, Cd4S4 with C2V, and Cd4S4 with TD symmetry) are investigated via optimization of their original structures at B3LYP/Lanl2dz theoretical level. Through considering integration influence of solvent and ligand, our calculated Raman and absorption spectra can be consistent with the reported experimental results. First, our calculated Raman peaks of Cd3S3, Cd4S4 (TD), (Cd3S3)2, and (Cd3S3)3 are within the range of 260–290 cm?1, which is also reported by experiment. Subsequently, for deep researching five clusters, the absorption spectra of them are calculated using time‐dependent DFT method. The wavelengths of the absorption peaks, which is calculated in solvent, increase in the order Cd3S3, Cd4S4 (TD), (Cd3S3)2, and (Cd3S3)3. Moreover, the wavelengths of absorption peaks shift to blue in solvent, compared with those without solvent. Furthermore, our clusters are smaller than the size of the smallest CdS nanocrystals, the calculated absorption spectra of five clusters in solvent show obvious blue shift than the wavelengths of absorption spectra of reported CdS nanocrystals. This is induced by the quantum size effect. Besides, we further investigated the influence of ligands to CdS unit in aqueous condition. Through structures and characters analysis of S? Cd? SR, we discovered that ligands took important role during the formation of CdS nanocrystals in aqueous synthesis. Calculated results of spectra, bond length, and Wiberg bond index (WBI) values show that different ligands have similar influence on CdS unit. Moreover, using WBI values, we also confirm that Cd atom has stronger interaction with S in nanocrystals than that with S atom in ligand. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

3.
Reaction of [M(NH3)6]Cl3 (M = Co, Rh, Ir) and [Ir(NH3)5(OH2)]Cl3 with (NH4)2C2O4 · H2O in aqueous solution resulted in the isolation of [M(NH3)6]2(C2O4)3 · 4 H2O and [Ir(NH3)5(OH2)]2(C2O4)3 · 4 H2O, respectively. The complexes have been characterized by X‐ray crystallography, IR and UV/VIS spectroscopy. The isomorphous compounds crystallize in the orthorhombic space group Pnnm (No. 58). Four molecules of crystal water are involved in an extended three‐dimensional hydrogen bonding network. The librational modes of the lattice water around 600 cm–1 allow the characterization of [Ir(NH3)6]2(C2O4)3 · 4 H2O and [Ir(NH3)5(OH2)]2(C2O4)3 · 4 H2O, respectively, by IR spectroscopy. The band around 600 cm–1 shows a significant frequency shift in the IR spectra of the hexaammine and aquapentaammine complex of iridium(III) and, by that, a distinction is possible.  相似文献   

4.
The gaseous penetration of La-Ce into PbTiO3 ceramics is reported. The compounds of La2Ti6O15 and CeTi21O38 are formed and the new La2Ti6O15-CeTi21O38-PbTiO3 ceramics are prepared by the penetration of La and Ce in the gaseous state. The new ceramic materials have a significant change in electric properties. The room temperature resistivity decreases from 2.0×1010 to 0.248 Ω. m, and the grain resistance exhibits an obvious PTCR effect with the change of temperature. However, the grain boundary resistance decreases rapidly with increase in temperature. The change rule of the total resistance is similar to that of the grain boundary, and the PTCR effect disappears and the tendency of transition to a conductive body is manifest. The XPS analysis suggests that the particles that are Pb, Ti, La and Ce in La2Ti6O15-CeTi21O38-PbTiO3 ceramics all change their valence and lead to decreasing resistivity, and the bound energy peak values of elements in La2Ti6O15-CeTi21O38-PbTiO3 ceramics are also reported. The La2Ti6O15-CeTi21O38-PbTiO3 ceramics have a better thermal stability in high temperatures through TG-DTA analysis.  相似文献   

5.
Increasing the stability of perovskite solar cells is one of the most important tasks in the photovoltaic industry. Thus, the structural, energetic, and electronic properties of pure CH3NH3PbI3 and fully doped compounds (CH3NH3PbBr3 and CH3NH3PbCl3) in cubic and tetragonal phases were investigated using density functional theory calculations. We also considered the effects of mixed halide perovskites CH3NH3PbI2X (where X = Br and Cl) and compared their properties with CH3NH3PbI3. The DFT results indicate that the phase transformation from tetragonal to cubic phase decreases the band gap. The calculated results show that the X‐site ion plays a vital role in the geometrical stability and electronic levels. An increase in the band gap and a reduction in the lattice constants are more apparent in CH3NH3PbI2X compounds (I > Br > Cl).  相似文献   

6.
Reactivity in the solid state between CoWO4 and some rare-earth metal tungstates RE2WO6 (RE = Sm, Eu, Gd) was investigated by the XRD method. Two families of new isostructural cobalt and rare-earth metal tungstates, Co2RE2W3O14 and CoRE4W3O16, were synthesized. The Co2RE2W3O14 phases are formed by heating in air the CoWO4 and RE2WO6 compounds mixed at the molar ratio 2:1, while the CoRE4W3O16 phases are synthesized at the molar ratio of CoWO4/RE2WO6 equals to 1:2. The Co2RE2W3O14 phases as well as the CoRE4W3O16 compounds crystallize in the orthorhombic system. The Co2RE2W3O14 and CoRE4W3O16 compound melt above 1150 °C. A melting manner of the Co2RE2W3O14 and CoRE4W3O16 compounds was determined in an inert atmosphere. The formation of CoWO4−x phase was observed during heating in an inert atmosphere.  相似文献   

7.
Syntheses and Crystal Structures of the Phosphaneimine Complexes MCl2(Me3SiNPMe3)2 with M = Zn and Co, and CoCl2(HNPMe3)2 The molecular complexes MCl2(Me3SiNPMe3)2 (M = Zn, Co) have been prepared by the reaction of the dichlorides of zinc and cobalt with Me3SiNPMe3 in CH3CN and CH2Cl2, respectively, whereas the complex CoCl2(HNPMe3)2 has been prepared by the reaction of CoCl2 with NaF in boiling acetonitrile in the presence of Me3SiNPMe3. All complexes were characterized by IR spectroscopy and by crystal structure determinations. The complexes MCl2(Me3SiNPMe3)2 crystallize isotypically. ZnCl2(Me3SiNPMe3)2: Space group P212121, Z = 4, 2677 observed unique reflections, R = 0.024. Lattice dimensions at ?70°C: a = 1243.6; b = 1319.0; c = 1464.7 pm. CoCl2(Me3SiNPMe3)2: Space group P212121, Z = 4, 3963 observed unique reflections, R = 0,071. Lattice dimensions at ?80°C: a = 1236.3; b = 1317.4; c = 1457.6 pm. CoCl2(HNPMe3)2 · CH2Cl2: Space group Pbca, Z = 8, 1354 observed unique reflections, R = 0.055. Lattice dimensions at ?80°C: a = 1247.3; b = 998.4; c = 2882.4 pm. All complexes have monomeric molecular structures, in which the metal atoms are coordinated in a distorted tetrahedral fashion by the two chlorine atoms and by the nitrogen atoms of the phosphaneimine molecules.  相似文献   

8.
The interaction of hydrazine (N2H4) molecule with pristine and Si-doped aluminum nitride (Al12N12) nano-cage was investigated using the density functional theory calculations. The adsorption energy of N2H4 on pristine Al12N12 in different configurations was about –1.67 and –1.64 eV with slight changes in its electronic structure. The results showed that the pristine nano-cage can be used as a chemical adsorbent for toxic hydrazine in nature. Compared with very low sensitivity between N2H4 and Al12N12 nano-cage, N2H4 molecule exhibits high sensitivity toward Si-doped Al12N12 nano-cage so that the energy gap of the Si-doped Al12N12 nano-cage is changed by about 31.86% and 37.61% for different configurations in the SiAl model and by about 26.10% in the SiN model after the adsorption process. On the other hand, in comparison with the SiAl model, the adsorption energy of N2H4 on the SiN model is less than that on the SiAl model to hinder the recovery of the nano-cage. As a result, the SiN Al12N11 is anticipated to be a potential novel sensor for detecting the presence of N2H4 molecule.  相似文献   

9.
The 124 superconductor YBa2Cu4O8 was prepared from the oxalate precursor Y2(C2O4)3. ·4BaC2O4·8CuC2O4·xH2O at one atmosphere oxygen pressure. In O2 the precursor decomposes in one step at 300°C and more gradually (300°–600°C) in Ar. The stability of the superconductor is strongly dependent on the gas atmosphere: in O2 and in air there is no significant weight change as long as the temperature does not exceed 800°C, whereas in a 1% O2-99%N2 mixture decomposition starts at about 670°C with the formation of CuO and YBa2Cu3Ox withx<7. The reduction of YBa2Cu4O8 in a 5% H2-95% Ar mixture takes place in at least four major steps with formation of products such as Y2O3, BaO, Cu2O, Cu, BaY2O4 and Ba4Y2O7.  相似文献   

10.
“One‐pot” substitution of the twenty hydrogen atoms in pentagonal dodecahedrane (C20H20) by OH, F, Cl, and Br atoms is explored. Electrophilic insertion of oxygen atoms with DMDO and TFMDO as oxidizing reagents ended, far off the desired C20(OH)20, in complex polyol mixtures (up to C20H10(OH)10 decols, a trace of C20H(OH)19?). Perfluorination was successful in a NaF matrix but (nearly pure) C20F20 could be secured only in very low yield. “Brute‐force” photochlorination (heat, light, pressure, time) provided a mixture of hydrogen‐free, barely soluble C20Cl16 dienes in high yield and C20Cl20 as a trace component. Upon electron‐impact ionization of the C20Cl16 material sequential loss of the chlorine atoms was the major fragmentation pathway furnishing, however, only minor amounts of chlorine‐free C20+ ions. “Brute‐force” photobrominations delivered an extremely complex mixture of polybromides with C20HBr13 trienes as the highest masses. The MS spectra exhibited exclusive loss of the Br substituents ending in rather intense singly, doubly, and triply charged C20H4–0+(2+)(3+) ions. The insoluble ~C20HBr13 fraction (C20Br14 trienes as highest masses) obtained along a modified bromination protocol, ultimately allowed the neat mass selection of C20? ions. The C20Cl16 dienes and C20H0–3Br14–12 tri‐/tetraenes, in spite of their very high olefinic pyramidalization, proved resistant to oxygen and dimerization (polymerization) but added CH2N2 smoothly. Dehalogenation of the respective cycloaddition products through electron‐impact ionization resulted in C22–24H4–8+(2+) ions possibly constituting bis‐/tris‐/tetrakis‐methano‐C20 fullerenes or partly hydrogenated C22, C23, and C24 cages.  相似文献   

11.
The temperature‐composition phase equilibria of the Hg0.8Cd0.2Te‐HgI2 system were investigated between about 100 and 800 °C using Debye‐Scherrer powder X‐ray diffraction techniques, differential thermal analysis, differential scanning calorimetry, and thermochemical and structural calculations. This system is a pseudobinary temperature‐ composition plane in the HgTe‐CdTe‐HgI2 pseudoternary phase diagram. Measurable solid solutions of HgI2 in Hg0.8Cd0.2Te with the cubic zinc blende‐type structure exist between about 290 and 700 °C, with a maximum solubility of 4.9 ± 0.3 mole‐% HgI2 at 363 ± 3 °C. Further addition of HgI2 to HgI2‐saturated Hg0.8Cd0.2Te yields the formation of CdI2, which reduces the mole fraction (x) of CdTe in the Hg1—xCdxTe host lattice. After sufficient HgI2 is added, the host lattice is depleted in CdTe and forms Hg3Te2I2 in addition to CdI2. Phase fields containing the ternary compound Hg3TeI4, which we first observed in the HgTe‐HgI2 system, also exist in the present system. Quaternary analogs of the known ternary compounds Hg3Te2I2 and Hg3TeI4, i.e., Hg3—yCdyTe2I2 and Hg3—yCdyTeI4, were not observed under present experimental conditions.  相似文献   

12.
利用沉淀法制备了纳米Ru催化剂,在ZnSO4存在下考察了Na2SiO3·9H2O和二乙醇胺作反应修饰剂对Ru催化剂催化苯选择加氢制环己烯性能的影响,并用X-射线衍射(XRD)、X-射线荧光光谱(XRF)和透射电镜-能量散射谱(TEM-EDS)等物理化学手段对加氢前后Ru催化剂进行了表征。结果表明,在水溶液中Na2SiO3与ZnSO4可以反应生成Zn4Si2O7(OH)2H2O盐、H2SO4和Na2SO4,化学吸附在Ru催化剂表面上的Zn4Si2O7(OH)2H2O盐起着提高Ru催化剂环己烯选择性的关键作用。Na2SiO3·9H2O量的增加,生成的Zn4Si2O7(OH)2H2O盐逐渐增加,Ru催化剂的活性降低,环己烯选择性逐渐升高。向反应体系中加入二乙醇胺,它可以中和Na2SiO3与ZnSO4反应生成的硫酸,使化学平衡向生成更多的Zn4Si2O7(OH)2H2O盐的方向移动,导致Ru催化剂环己烯选择性增加。当Ru催化剂与ZnSO4·7H2O、Na2SiO3·9H2O和二乙醇胺、分散剂ZrO2的质量比为1.0:24.6:0.4:0.2:5.0时,2 g Ru催化剂上苯转化73%时环己烯选择性和收率分别为75%和55%,而且该催化剂体系具有良好的重复使用性和稳定性。  相似文献   

13.
Chronic toxicity of indium arsenide (InAs) and arsenic selenide (As2Se3) was studied in male Syrian golden hamsters which received InAs or As2Se3 particles, each containing a total dose of 7.5 mg of arsenic, by intratracheal instillations once a week for 15 weeks. As a control, hamsters were treated with the vehicle, phosphate buffer solution. During their total lifespan, the cumulative body weight gain of the hamsters in the InAs group was suppressed significantly compared with that in the control group, but not in the As2Se3 group when compared with that in the control group. However, the survival rate for the InAs group was significantly higher compared with the control group, but not for the As2Se3 group when compared with the control group. During the animals' total lifespan, one lung adenoma was seen in the 27 hamsters in the InAs group and one lung adenoma in the 23 hamsters in the control group. No tumors of the lung were observed in the As2Se3 group. Malignant tumors outside the lung appeared in four hamsters in the InAs group and in two in the As2Se3 group. No non-lung malignant tumours were seen in the control group. Total tumor incidence rates were 25.9% (7/27) in the InAs group, 10.3% (3/29) in the As2Se3 group and 8.7% (2/23) in the control group. There were therefore no significant differences in tumor incidence between the InAs or the As2Se3 group, and the control group. Regarding histopathological findings in the lung, incidence rates of proteinosis-like lesions, pneumonia, metaplastic ossification and emphysema were seen only in the InAs group, and alveolar or bronchiolar cell hyperplasia observed in both the InAs and the As2Se3 groups were at significantly higher rates than those in the control group. From these results, it was concluded that InAs and As2Se3 particles could induce pulmonary toxicity when instilled intratracheally into hamsters. A great deal of attention should be paid to the toxicity of both InAs and As2Se3, even though in this study the adverse health effects of As2Se3 appeared to be less than those of InAs.  相似文献   

14.
Metal selenates crystallize in many instances in isomorphic structures of the corresponding sulfates. Sodium magnesium selenate decahydrate, Na2Mg(SeO4)2·10H2O, and sodium magnesium selenate dihydrate, Na2Mg(SeO4)2·2H2O, were synthesized by preparing solutions of Na2SeO4 and MgSeO4·6H2O with different molar ratios. The structures contain different Mg octahedra, i.e. [Mg(H2O)6] octahedra in the decahydrate and [MgO4(H2O)2] octahedra in the dihydrate. The sodium polyhedra are also different, i.e. [NaO2(H2O)4] in the decahydrate and [NaO6(H2O)] in the dihydrate. The selenate tetrahedra are connected with the chains of Na polyhedra in the two structures. O—H…O hydrogen bonding is observed in both structures between the coordinating water molecules and selenate O atoms.  相似文献   

15.
H2-SCR is served as the promising technology for the controlling of NOx emission, and the Pd-based derivative catalyst exhibited high NOx reduction performance. Effectively regulating the electronic configuration of the active component is favorable to the rational optimization of noble Pd. In this work, a series of Pr1-xCexMn1-yPdyO3@Ni were successfully synthesized and exhibited superior NO conversion efficiency at low temperatures. 92.7 % conversion efficiency was achieved at 200 °C over Pr0.9Ce0.1Mn0.9Pd0.1O3@Ni in the presence of 4 % O2 with a GHSV of 32000 h−1. Meanwhile, the outstanding performance was obtained in the resistance to SO2 (200 ppm) and H2O (8 %). Deduced from the results of XRD, Raman, XPS, and H2-TPR, the modification of d orbit states in palladium was confirmed originating from the incorporation in the B site of Pr0.9Ce0.1Mn0.9Pd0.1O3. The existence of higher valence (Pd3+ and Pd4+) than the bivalence in Pr0.9Ce0.1Mn0.9Pd0.1O3 catalyst was evidenced by XPS analysis. Our research provides a new sight into the H2-SCR through the higher utilization of Pd.  相似文献   

16.
This study compared the conversion of two malodorous substances, dimethyl sulfide (CH3SCH3, DMS) and methanethiol (CH3SH) in a cold plasma reactor. The DMS and CH3SH were successfully destroyed at room temperature. DMS decomposed less than CH3SH at the same conditions. In oxygen-free condition, CS2 and hydrocarbons were the major products, while SO2 and COx were main compounds in oxygen-rich environments. The DMS/Ar plasma yielded more hydrocarbons and less CS2 than that of CH3SH/Ar plasma. In the CH3SH/O2/Ar plasma, rapid formation of SO and CO resulted in the yields much more amounts of SO2 and CO2 than those in the DMS/O2/Ar plasma; and remained only a trace of total hydrocarbons, CH2O, CH3OH, CS2, and OCS. The major differences between the reaction mechanisms of DMS and CH3SH were also proposed and discussed.  相似文献   

17.
Trimethylsilyldimethylarsane Me3SiAsMe2 was used as a reagent for the substitution of fluorine in polyfluoroarenes C6F5X (X = F, H, Cl) and C5NF5 by the Me2As group. The reactions occur between 50 — 180 °C, either in benzene or without solvent, to give as a rule 4‐X‐1‐(dimethylarsano)tetrafluorobenzenes XC6F4AsMe2, ( 1—3 ) and 4‐dimethylarsano‐tetrafluoropyridine C5NF4AsMe2 ( 4 ), respectively, in yields between 43 and 94 %. In the case of C6F6, also double substitution is observed affording 1, 4‐bis(dimethylarsano)tetrafluorobenzene 5 in addition to the monosubstituted derivative. The time and temperature dependencies of the reactions increase in the sequence: C6F6< C6F5H < C6F5Cl < C5NF5. The arsanes 1 and 4 were transformed to the potentially valuable bidentate ligands 1‐(dimethylarsano)‐4‐(dimethylphosphano)tetrafluorobenzene 6 and 4‐(dimethylarsano)‐2‐(dimethylphosphano)trifluoropyridine 8 by reaction with trimethylsilyl‐dimethylphosphane Me3SiPMe2. 6 reacts with oxygen to yield the corresponding phosphane oxide 7 . Trimethylsilyl‐dimethylamine Me3SiNMe2 also was successfully tested as a reagent for the dimethylamination of polyfluoroarenes C6F5X [X = F, H, Cl, CF3, P(S)Me2], 1‐P(S)Me2‐4‐H‐C6F4 and 4‐X‐C5NF4 [X = F, PMe2, P(S)Me2]. Sulfuration of the new Me2P derivatives 8 and 20 leads to the corresponding thiophosphanes 9 and 21 (Schemes 2 and 3). Furthermore, the recently reported very efficient one‐pot synthesis of Me2P substituted polyfluoroarenes (e.g. XC6F4PMe2 with X = F, Me2PC6F4) was extended to the preparation of Me2As and MeS derivatives of pentafluoropyridine using a mixture of Me3SnH, As2Me4 (or S2Me2) and C5NF5 as precursors for the one‐pot reaction. The expected products 4‐(dimethylarsano)tetrafluoropyridine 4 and 4‐(methylthio)tetrafluoropyridine 22 , respectively, were obtained in 84 and 82 % isolated yields. The novel compounds were characterized by spectroscopic (NMR, MS) and analytical data. Compounds 5 , 7 , 9 and 21 could be isolated in form of single crystals and their structures have been studied by X‐ray diffraction.  相似文献   

18.
On the refluxing ofM(II) oxalate (M=Mn, Co, Ni, Cu, Zn or Cd) and 2-ethanolamine in chloroform, the following complexes were obtained: MnC2O4·HOCH2CH2NH2·H2O, CoC2O4·2HOCH2CH2NH2, Ni2(C2O4)2·5HOCH2CH2NH2·3H2O, Cu2(C2O4)2·5HOCH2CH2NH2, Zn2(C2O4)2·5HOCH2CH2NH2·2H2O and Cd2(C2O4)2·HOCH2CH2NH2·2H2O. Following the reaction ofM(II) oxalate with 2-ethanolamine in the presence of ethanolammonium oxalate, a compound with the empirical formula ZnC2O4·HOCH2CH2NH2·2H2O1 was isolated. The complexes were identified by using elemental analysis, X-ray powder diffraction patterns, IR spectra, and thermogravimetric and differential thermal analysis. The IR spectra and X-ray powder diffraction patterns showed that the complexes obtained were not isostructural. Their thermal decompositions, in the temperature interval between 20 and about 900°C, also take place in different ways, mainly through the formation of different amine complexes. The DTA curves exhibit a number of thermal effects.  相似文献   

19.
When aprotic Li–O2 batteries discharge, the product phase formed in the cathode often contains two different morphologies, that is, crystalline and amorphous Li2O2. The morphology of Li2O2 impacts strongly on the electrochemical performance of Li–O2 cells in terms of energy efficiency and rate capability. Crystalline Li2O2 is readily available and its properties have been studied in depth for Li–O2 batteries. However, little is known about the amorphous Li2O2 because of its rarity in high purity. Herein, amorphous Li2O2 has been synthesized by a rapid reaction of tetramethylammonium superoxide and LiClO4 in solution, and its amorphous nature has been confirmed by a range of techniques. Compared with its crystalline siblings, amorphous Li2O2 demonstrates enhanced charge‐transport properties and increased electro‐oxidation kinetics, manifesting itself a desirable discharge phase for high‐performance Li–O2 batteries.  相似文献   

20.
Co0.5Ni0.5(Gd/Nd)xFe2-xO4 (x ?= ?0.0 and 0.06) ferrites were prepared by the solid-state reaction method. These materials were characterized by XRD, FT-IR spectroscopy, and VSM techniques. The XRD analysis revealed the phase formation of all samples and their cubic spinel structure with the Fd-3m space group. Lattice constant was found to increase due to Gd and Nd ions substitution. However, the crystallite size was observed to decrease by the substitution effect. The FT-IR spectra showed the two vibrational frequency bands of the tetrahedral and octahedral sites. From the magnetic properties study, it was identified that the pure and Gd substituted Co0.5Ni0.5Fe2O4 ferrite showed a ferromagnetic behaviour. While the Nd substituted Co0.5Ni0.5Fe2O4 ferrite delivered a superparamagnetic behaviour. The substitution of Gd and Nd changed the values of the magnetic parameters of Co0.5Ni0.5Fe2O4 ferrite. An increase in the saturation magnetization (Ms) value was observed due to substitution of Gd and Nd in Co0.5Ni0.5Fe2O4 ferrite, indicating that Gd and Nd substitution strengthen the supermagnetic interactions in Co0.5Ni0.5Fe2O4 ferrite. The highest value of Ms was observed in Gd doped sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号